Cargando…
Simultaneous lesion and brain segmentation in multiple sclerosis using deep neural networks
Segmentation of white matter lesions and deep grey matter structures is an important task in the quantification of magnetic resonance imaging in multiple sclerosis. In this paper we explore segmentation solutions based on convolutional neural networks (CNNs) for providing fast, reliable segmentation...
Autores principales: | McKinley, Richard, Wepfer, Rik, Aschwanden, Fabian, Grunder, Lorenz, Muri, Raphaela, Rummel, Christian, Verma, Rajeev, Weisstanner, Christian, Reyes, Mauricio, Salmen, Anke, Chan, Andrew, Wagner, Franca, Wiest, Roland |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7806997/ https://www.ncbi.nlm.nih.gov/pubmed/33441684 http://dx.doi.org/10.1038/s41598-020-79925-4 |
Ejemplares similares
-
Automatic detection of lesion load change in Multiple Sclerosis using convolutional neural networks with segmentation confidence
por: McKinley, Richard, et al.
Publicado: (2019) -
A Fully Automated Pipeline for Normative Atrophy in Patients with Neurodegenerative Disease
por: Rummel, Christian, et al.
Publicado: (2018) -
Direct cortical thickness estimation using deep learning‐based anatomy segmentation and cortex parcellation
por: Rebsamen, Michael, et al.
Publicado: (2020) -
A Quantitative Imaging Biomarker Supporting Radiological Assessment of Hippocampal Sclerosis Derived From Deep Learning-Based Segmentation of T1w-MRI
por: Rebsamen, Michael, et al.
Publicado: (2022) -
Reliable brain morphometry from contrast‐enhanced T1w‐MRI in patients with multiple sclerosis
por: Rebsamen, Michael, et al.
Publicado: (2022)