Cargando…
Artificial intelligence matches subjective severity assessment of pneumonia for prediction of patient outcome and need for mechanical ventilation: a cohort study
To compare the performance of artificial intelligence (AI) and Radiographic Assessment of Lung Edema (RALE) scores from frontal chest radiographs (CXRs) for predicting patient outcomes and the need for mechanical ventilation in COVID-19 pneumonia. Our IRB-approved study included 1367 serial CXRs fro...
Autores principales: | Ebrahimian, Shadi, Homayounieh, Fatemeh, Rockenbach, Marcio A. B. C., Putha, Preetham, Raj, Tarun, Dayan, Ittai, Bizzo, Bernardo C., Buch, Varun, Wu, Dufan, Kim, Kyungsang, Li, Quanzheng, Digumarthy, Subba R., Kalra, Mannudeep K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7807029/ https://www.ncbi.nlm.nih.gov/pubmed/33441578 http://dx.doi.org/10.1038/s41598-020-79470-0 |
Ejemplares similares
-
Performance of a Chest Radiography AI Algorithm for Detection of Missed or Mislabeled Findings: A Multicenter Study
por: Kaviani, Parisa, et al.
Publicado: (2022) -
Multicenter Assessment of CT Pneumonia Analysis Prototype for Predicting Disease Severity and Patient Outcome
por: Homayounieh, Fatemeh, et al.
Publicado: (2021) -
CT Radiomics, Radiologists, and Clinical Information in Predicting Outcome of Patients with COVID-19 Pneumonia
por: Homayounieh, Fatemeh, et al.
Publicado: (2020) -
A multi-center study of COVID-19 patient prognosis using deep learning-based CT image analysis and electronic health records
por: Gong, Kuang, et al.
Publicado: (2021) -
Use of radiomics to differentiate left atrial appendage thrombi and mixing artifacts on single-phase CT angiography
por: Ebrahimian, Shadi, et al.
Publicado: (2021)