Cargando…
Automated Contouring of Contrast and Noncontrast Computed Tomography Liver Images With Fully Convolutional Networks
PURPOSE: The deformable nature of the liver can make focal treatment challenging and is not adequately addressed with simple rigid registration techniques. More advanced registration techniques can take deformations into account (eg, biomechanical modeling) but require segmentations of the whole liv...
Autores principales: | Anderson, Brian M., Lin, Ethan Y., Cardenas, Carlos E., Gress, Dustin A., Erwin, William D., Odisio, Bruno C., Koay, Eugene J., Brock, Kristy K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7807136/ https://www.ncbi.nlm.nih.gov/pubmed/33490720 http://dx.doi.org/10.1016/j.adro.2020.04.023 |
Ejemplares similares
-
The Effect of Slice Thickness on Contours of Brain Metastases for Stereotactic Radiosurgery
por: Thrower, Sara L., et al.
Publicado: (2021) -
A fully automated noncontrast CT 3‐D reconstruction algorithm enabled accurate anatomical demonstration for lung segmentectomy
por: Chen, Xiuyuan, et al.
Publicado: (2022) -
Automatic contouring system for cervical cancer using convolutional neural networks
por: Rhee, Dong Joo, et al.
Publicado: (2020) -
Automated segmentation of colorectal liver metastasis and liver ablation on contrast-enhanced CT images
por: Anderson, Brian M., et al.
Publicado: (2022) -
Quantifying pulmonary perfusion from noncontrast computed tomography
por: Castillo, Edward, et al.
Publicado: (2021)