Cargando…
FSDroid:- A feature selection technique to detect malware from Android using Machine Learning Techniques: FSDroid
With the recognition of free apps, Android has become the most widely used smartphone operating system these days and it naturally invited cyber-criminals to build malware-infected apps that can steal vital information from these devices. The most critical problem is to detect malware-infected apps...
Autores principales: | Mahindru, Arvind, Sangal, A.L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7807414/ https://www.ncbi.nlm.nih.gov/pubmed/33462535 http://dx.doi.org/10.1007/s11042-020-10367-w |
Ejemplares similares
-
Malware detection in Android phones
por: Malik, Sapna
Publicado: (2017) -
On the evaluation of android malware detectors against code-obfuscation techniques
por: Nawaz, Umair, et al.
Publicado: (2022) -
Lightweight On-Device Detection of Android Malware Based on the Koodous Platform and Machine Learning
por: Krzysztoń, Mateusz, et al.
Publicado: (2022) -
Android malware and analysis
por: Dunham, Ken
Publicado: (2014) -
Automated Android Malware Detection Using User Feedback
por: Duque, João, et al.
Publicado: (2022)