Cargando…
Predicting Air Superficial Velocity of Two-Phase Reactors Using ANFIS and CFD
[Image: see text] In predicting the turbulence property of gas (bubble) flow in the domain of continuous fluid and liquid, the integration of machine learning and computational fluid dynamics (CFD) methods reduces the overall computational time. This combination enables us to see the effective input...
Autores principales: | Babanezhad, Meisam, Rezakazemi, Mashallah, Marjani, Azam, Shirazian, Saeed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7807482/ https://www.ncbi.nlm.nih.gov/pubmed/33458476 http://dx.doi.org/10.1021/acsomega.0c04386 |
Ejemplares similares
-
Evaluation of product of two sigmoidal membership functions (psigmf) as an ANFIS membership function for prediction of nanofluid temperature
por: Babanezhad, Meisam, et al.
Publicado: (2020) -
ANFIS grid partition framework with difference between two sigmoidal membership functions structure for validation of nanofluid flow
por: Pishnamazi, Mahboubeh, et al.
Publicado: (2020) -
Velocity prediction of nanofluid in a heated porous pipe: DEFIS learning of CFD results
por: Babanezhad, Meisam, et al.
Publicado: (2021) -
High-performance hybrid modeling chemical reactors using differential evolution based fuzzy inference system
por: Babanezhad, Meisam, et al.
Publicado: (2020) -
Investigation on performance of particle swarm optimization (PSO) algorithm based fuzzy inference system (PSOFIS) in a combination of CFD modeling for prediction of fluid flow
por: Babanezhad, Meisam, et al.
Publicado: (2021)