Cargando…
A single neural network for cone-beam computed tomography-based radiotherapy of head-and-neck, lung and breast cancer
Background and purpose Adaptive radiotherapy based on cone-beam computed tomography (CBCT) requires high CT number accuracy to ensure accurate dose calculations. Recently, deep learning has been proposed for fast CBCT artefact corrections on single anatomical sites. This study investigated the feasi...
Autores principales: | Maspero, Matteo, Houweling, Antonetta C., Savenije, Mark H.F., van Heijst, Tristan C.F., Verhoeff, Joost J.C., Kotte, Alexis N.T.J., van den Berg, Cornelis A.T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7807541/ https://www.ncbi.nlm.nih.gov/pubmed/33458310 http://dx.doi.org/10.1016/j.phro.2020.04.002 |
Ejemplares similares
-
Clinical utility of convolutional neural networks for treatment planning in radiotherapy for spinal metastases
por: Arends, Sebastiaan R.S., et al.
Publicado: (2022) -
Clinical implementation of MRI-based organs-at-risk auto-segmentation with convolutional networks for prostate radiotherapy
por: Savenije, Mark H. F., et al.
Publicado: (2020) -
Real‐time 3D motion estimation from undersampled MRI using multi‐resolution neural networks
por: Terpstra, Maarten L., et al.
Publicado: (2021) -
Radiotherapy Late Effects and Osteogenesis Imperfecta: Dos and Don'ts in Clinical Practice
por: Lodeweges, Joyce E., et al.
Publicado: (2019) -
Magnetic resonance guided elective neck irradiation targeting individual lymph nodes: A new concept
por: Reinders, Floris C.J., et al.
Publicado: (2021)