Cargando…
Towards spatial representations of dose distributions to predict risk of normal tissue morbidity after radiotherapy
Autores principales: | Casares-Magaz, Oscar, Moiseenko, Vitali, Witte, Marnix, Rancati, Tiziana, Muren, Ludvig P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7807547/ https://www.ncbi.nlm.nih.gov/pubmed/33458334 http://dx.doi.org/10.1016/j.phro.2020.08.002 |
Ejemplares similares
-
A case-control study using motion-inclusive spatial dose-volume metrics to account for genito-urinary toxicity following high-precision radiotherapy for prostate cancer()
por: Casares-Magaz, Oscar, et al.
Publicado: (2018) -
Uncertainty evaluation of image-based tumour control probability models in radiotherapy of prostate cancer using a visual analytic tool
por: Casares-Magaz, Oscar, et al.
Publicado: (2018) -
A biological modelling based comparison of radiotherapy plan robustness using photons vs protons for focal prostate boosting
por: Pedersen, Jesper, et al.
Publicado: (2018) -
Imaging science and development in modern high-precision radiotherapy
por: Thorwarth, Daniela, et al.
Publicado: (2019) -
Developments in deep learning based corrections of cone beam computed tomography to enable dose calculations for adaptive radiotherapy
por: Taasti, Vicki Trier, et al.
Publicado: (2020)