Cargando…
Developments in deep learning based corrections of cone beam computed tomography to enable dose calculations for adaptive radiotherapy
Autores principales: | Taasti, Vicki Trier, Klages, Peter, Parodi, Katia, Muren, Ludvig Paul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7807621/ https://www.ncbi.nlm.nih.gov/pubmed/33458330 http://dx.doi.org/10.1016/j.phro.2020.07.012 |
Ejemplares similares
-
Surveying the clinical practice of treatment adaptation and motion management in particle therapy
por: Knäusl, Barbara, et al.
Publicado: (2023) -
Current and future developments of synthetic computed tomography generation for radiotherapy
por: van Elmpt, Wouter, et al.
Publicado: (2023) -
Tissue-specific range uncertainty estimation in proton therapy
por: Vestergaard, Casper Dueholm, et al.
Publicado: (2023) -
Evaluation of an a priori scatter correction algorithm for cone-beam computed tomography based range and dose calculations in proton therapy
por: Andersen, Andreas Gravgaard, et al.
Publicado: (2020) -
Cone beam computed tomography for dose calculation quality assurance for magnetic resonance-only radiotherapy
por: Wyatt, Jonathan J., et al.
Publicado: (2021)