Cargando…
Detection of active and inactive phases of thyroid-associated ophthalmopathy using deep convolutional neural network
BACKGROUND: This study aimed to establish a deep learning system for detecting the active and inactive phases of thyroid-associated ophthalmopathy (TAO) using magnetic resonance imaging (MRI). This system could provide faster, more accurate, and more objective assessments across populations. METHODS...
Autores principales: | Lin, Chenyi, Song, Xuefei, Li, Lunhao, Li, Yinwei, Jiang, Mengda, Sun, Rou, Zhou, Huifang, Fan, Xianqun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7807896/ https://www.ncbi.nlm.nih.gov/pubmed/33446163 http://dx.doi.org/10.1186/s12886-020-01783-5 |
Ejemplares similares
-
Novel observational study protocol to develop a prediction model that identifies patients with Graves’ ophthalmopathy insensitive to intravenous glucocorticoids pulse therapy
por: Wang, Yi, et al.
Publicado: (2021) -
The involvement of T cell pathogenesis in thyroid-associated ophthalmopathy
por: Huang, Yazhuo, et al.
Publicado: (2018) -
A clinical study of topical treatment for thyroid-associated ophthalmopathy with dry eye syndrome
por: Sun, Rou, et al.
Publicado: (2023) -
Forced duction training: A potential key point for recovery in pediatric patients with trapdoor fracture
por: Li, Yinwei, et al.
Publicado: (2016) -
Abnormal regional spontaneous neural activity and functional connectivity in thyroid-associated ophthalmopathy patients with different activity: a resting-state fMRI study
por: Jiang, Mengda, et al.
Publicado: (2023)