Cargando…

A computational method for immune repertoire mining that identifies novel binders from different clonotypes, demonstrated by identifying anti-pertussis toxoid antibodies

Due to their shared genetic history, antibodies from the same clonotype often bind to the same epitope. This knowledge is used in immune repertoire mining, where known binders are used to search bulk sequencing repertoires to identify new binders. However, current computational methods cannot identi...

Descripción completa

Detalles Bibliográficos
Autores principales: Richardson, Eve, Galson, Jacob D., Kellam, Paul, Kelly, Dominic F., Smith, Sarah E., Palser, Anne, Watson, Simon, Deane, Charlotte M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7808390/
https://www.ncbi.nlm.nih.gov/pubmed/33427589
http://dx.doi.org/10.1080/19420862.2020.1869406
_version_ 1783636889853493248
author Richardson, Eve
Galson, Jacob D.
Kellam, Paul
Kelly, Dominic F.
Smith, Sarah E.
Palser, Anne
Watson, Simon
Deane, Charlotte M.
author_facet Richardson, Eve
Galson, Jacob D.
Kellam, Paul
Kelly, Dominic F.
Smith, Sarah E.
Palser, Anne
Watson, Simon
Deane, Charlotte M.
author_sort Richardson, Eve
collection PubMed
description Due to their shared genetic history, antibodies from the same clonotype often bind to the same epitope. This knowledge is used in immune repertoire mining, where known binders are used to search bulk sequencing repertoires to identify new binders. However, current computational methods cannot identify epitope convergence between antibodies from different clonotypes, limiting the sequence diversity of antigen-specific antibodies that can be identified. We describe how the antibody binding site, the paratope, can be used to cluster antibodies with common antigen reactivity from different clonotypes. Our method, paratyping, uses the predicted paratope to identify these novel cross clonotype matches. We experimentally validated our predictions on a pertussis toxoid dataset. Our results show that even the simplest abstraction of the antibody binding site, using only the length of the loops involved and predicted binding residues, is sufficient to group antigen-specific antibodies and provide additional information to conventional clonotype analysis. Abbreviations: BCR: B-cell receptor; CDR: complementarity-determining region; PTx: pertussis toxoid
format Online
Article
Text
id pubmed-7808390
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Taylor & Francis
record_format MEDLINE/PubMed
spelling pubmed-78083902021-01-29 A computational method for immune repertoire mining that identifies novel binders from different clonotypes, demonstrated by identifying anti-pertussis toxoid antibodies Richardson, Eve Galson, Jacob D. Kellam, Paul Kelly, Dominic F. Smith, Sarah E. Palser, Anne Watson, Simon Deane, Charlotte M. MAbs Report Due to their shared genetic history, antibodies from the same clonotype often bind to the same epitope. This knowledge is used in immune repertoire mining, where known binders are used to search bulk sequencing repertoires to identify new binders. However, current computational methods cannot identify epitope convergence between antibodies from different clonotypes, limiting the sequence diversity of antigen-specific antibodies that can be identified. We describe how the antibody binding site, the paratope, can be used to cluster antibodies with common antigen reactivity from different clonotypes. Our method, paratyping, uses the predicted paratope to identify these novel cross clonotype matches. We experimentally validated our predictions on a pertussis toxoid dataset. Our results show that even the simplest abstraction of the antibody binding site, using only the length of the loops involved and predicted binding residues, is sufficient to group antigen-specific antibodies and provide additional information to conventional clonotype analysis. Abbreviations: BCR: B-cell receptor; CDR: complementarity-determining region; PTx: pertussis toxoid Taylor & Francis 2021-01-11 /pmc/articles/PMC7808390/ /pubmed/33427589 http://dx.doi.org/10.1080/19420862.2020.1869406 Text en © 2021 The Author(s). Published with license by Taylor & Francis Group, LLC. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Report
Richardson, Eve
Galson, Jacob D.
Kellam, Paul
Kelly, Dominic F.
Smith, Sarah E.
Palser, Anne
Watson, Simon
Deane, Charlotte M.
A computational method for immune repertoire mining that identifies novel binders from different clonotypes, demonstrated by identifying anti-pertussis toxoid antibodies
title A computational method for immune repertoire mining that identifies novel binders from different clonotypes, demonstrated by identifying anti-pertussis toxoid antibodies
title_full A computational method for immune repertoire mining that identifies novel binders from different clonotypes, demonstrated by identifying anti-pertussis toxoid antibodies
title_fullStr A computational method for immune repertoire mining that identifies novel binders from different clonotypes, demonstrated by identifying anti-pertussis toxoid antibodies
title_full_unstemmed A computational method for immune repertoire mining that identifies novel binders from different clonotypes, demonstrated by identifying anti-pertussis toxoid antibodies
title_short A computational method for immune repertoire mining that identifies novel binders from different clonotypes, demonstrated by identifying anti-pertussis toxoid antibodies
title_sort computational method for immune repertoire mining that identifies novel binders from different clonotypes, demonstrated by identifying anti-pertussis toxoid antibodies
topic Report
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7808390/
https://www.ncbi.nlm.nih.gov/pubmed/33427589
http://dx.doi.org/10.1080/19420862.2020.1869406
work_keys_str_mv AT richardsoneve acomputationalmethodforimmunerepertoireminingthatidentifiesnovelbindersfromdifferentclonotypesdemonstratedbyidentifyingantipertussistoxoidantibodies
AT galsonjacobd acomputationalmethodforimmunerepertoireminingthatidentifiesnovelbindersfromdifferentclonotypesdemonstratedbyidentifyingantipertussistoxoidantibodies
AT kellampaul acomputationalmethodforimmunerepertoireminingthatidentifiesnovelbindersfromdifferentclonotypesdemonstratedbyidentifyingantipertussistoxoidantibodies
AT kellydominicf acomputationalmethodforimmunerepertoireminingthatidentifiesnovelbindersfromdifferentclonotypesdemonstratedbyidentifyingantipertussistoxoidantibodies
AT smithsarahe acomputationalmethodforimmunerepertoireminingthatidentifiesnovelbindersfromdifferentclonotypesdemonstratedbyidentifyingantipertussistoxoidantibodies
AT palseranne acomputationalmethodforimmunerepertoireminingthatidentifiesnovelbindersfromdifferentclonotypesdemonstratedbyidentifyingantipertussistoxoidantibodies
AT watsonsimon acomputationalmethodforimmunerepertoireminingthatidentifiesnovelbindersfromdifferentclonotypesdemonstratedbyidentifyingantipertussistoxoidantibodies
AT deanecharlottem acomputationalmethodforimmunerepertoireminingthatidentifiesnovelbindersfromdifferentclonotypesdemonstratedbyidentifyingantipertussistoxoidantibodies
AT richardsoneve computationalmethodforimmunerepertoireminingthatidentifiesnovelbindersfromdifferentclonotypesdemonstratedbyidentifyingantipertussistoxoidantibodies
AT galsonjacobd computationalmethodforimmunerepertoireminingthatidentifiesnovelbindersfromdifferentclonotypesdemonstratedbyidentifyingantipertussistoxoidantibodies
AT kellampaul computationalmethodforimmunerepertoireminingthatidentifiesnovelbindersfromdifferentclonotypesdemonstratedbyidentifyingantipertussistoxoidantibodies
AT kellydominicf computationalmethodforimmunerepertoireminingthatidentifiesnovelbindersfromdifferentclonotypesdemonstratedbyidentifyingantipertussistoxoidantibodies
AT smithsarahe computationalmethodforimmunerepertoireminingthatidentifiesnovelbindersfromdifferentclonotypesdemonstratedbyidentifyingantipertussistoxoidantibodies
AT palseranne computationalmethodforimmunerepertoireminingthatidentifiesnovelbindersfromdifferentclonotypesdemonstratedbyidentifyingantipertussistoxoidantibodies
AT watsonsimon computationalmethodforimmunerepertoireminingthatidentifiesnovelbindersfromdifferentclonotypesdemonstratedbyidentifyingantipertussistoxoidantibodies
AT deanecharlottem computationalmethodforimmunerepertoireminingthatidentifiesnovelbindersfromdifferentclonotypesdemonstratedbyidentifyingantipertussistoxoidantibodies