Cargando…

Predicting in-hospital mortality from Coronavirus Disease 2019: A simple validated app for clinical use

BACKGROUNDS: Validated tools for predicting individual in-hospital mortality of COVID-19 are lacking. We aimed to develop and to validate a simple clinical prediction rule for early identification of in-hospital mortality of patients with COVID-19. METHODS AND FINDINGS: We enrolled 2191 consecutive...

Descripción completa

Detalles Bibliográficos
Autores principales: Magro, Bianca, Zuccaro, Valentina, Novelli, Luca, Zileri, Lorenzo, Celsa, Ciro, Raimondi, Federico, Gori, Mauro, Cammà, Giulia, Battaglia, Salvatore, Genova, Vincenzo Giuseppe, Paris, Laura, Tacelli, Matteo, Mancarella, Francesco Antonio, Enea, Marco, Attanasio, Massimo, Senni, Michele, Di Marco, Fabiano, Lorini, Luca Ferdinando, Fagiuoli, Stefano, Bruno, Raffaele, Cammà, Calogero, Gasbarrini, Antonio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7808616/
https://www.ncbi.nlm.nih.gov/pubmed/33444411
http://dx.doi.org/10.1371/journal.pone.0245281
_version_ 1783636937358180352
author Magro, Bianca
Zuccaro, Valentina
Novelli, Luca
Zileri, Lorenzo
Celsa, Ciro
Raimondi, Federico
Gori, Mauro
Cammà, Giulia
Battaglia, Salvatore
Genova, Vincenzo Giuseppe
Paris, Laura
Tacelli, Matteo
Mancarella, Francesco Antonio
Enea, Marco
Attanasio, Massimo
Senni, Michele
Di Marco, Fabiano
Lorini, Luca Ferdinando
Fagiuoli, Stefano
Bruno, Raffaele
Cammà, Calogero
Gasbarrini, Antonio
author_facet Magro, Bianca
Zuccaro, Valentina
Novelli, Luca
Zileri, Lorenzo
Celsa, Ciro
Raimondi, Federico
Gori, Mauro
Cammà, Giulia
Battaglia, Salvatore
Genova, Vincenzo Giuseppe
Paris, Laura
Tacelli, Matteo
Mancarella, Francesco Antonio
Enea, Marco
Attanasio, Massimo
Senni, Michele
Di Marco, Fabiano
Lorini, Luca Ferdinando
Fagiuoli, Stefano
Bruno, Raffaele
Cammà, Calogero
Gasbarrini, Antonio
author_sort Magro, Bianca
collection PubMed
description BACKGROUNDS: Validated tools for predicting individual in-hospital mortality of COVID-19 are lacking. We aimed to develop and to validate a simple clinical prediction rule for early identification of in-hospital mortality of patients with COVID-19. METHODS AND FINDINGS: We enrolled 2191 consecutive hospitalized patients with COVID-19 from three Italian dedicated units (derivation cohort: 1810 consecutive patients from Bergamo and Pavia units; validation cohort: 381 consecutive patients from Rome unit). The outcome was in-hospital mortality. Fine and Gray competing risks multivariate model (with discharge as a competing event) was used to develop a prediction rule for in-hospital mortality. Discrimination and calibration were assessed by the area under the receiver operating characteristic curve (AUC) and by Brier score in both the derivation and validation cohorts. Seven variables were independent risk factors for in-hospital mortality: age (Hazard Ratio [HR] 1.08, 95% Confidence Interval [CI] 1.07–1.09), male sex (HR 1.62, 95%CI 1.30–2.00), duration of symptoms before hospital admission <10 days (HR 1.72, 95%CI 1.39–2.12), diabetes (HR 1.21, 95%CI 1.02–1.45), coronary heart disease (HR 1.40 95% CI 1.09–1.80), chronic liver disease (HR 1.78, 95%CI 1.16–2.72), and lactate dehydrogenase levels at admission (HR 1.0003, 95%CI 1.0002–1.0005). The AUC was 0.822 (95%CI 0.722–0.922) in the derivation cohort and 0.820 (95%CI 0.724–0.920) in the validation cohort with good calibration. The prediction rule is freely available as a web-app (COVID-CALC: https://sites.google.com/community.unipa.it/covid-19riskpredictions/c19-rp). CONCLUSIONS: A validated simple clinical prediction rule can promptly and accurately assess the risk for in-hospital mortality, improving triage and the management of patients with COVID-19.
format Online
Article
Text
id pubmed-7808616
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-78086162021-02-02 Predicting in-hospital mortality from Coronavirus Disease 2019: A simple validated app for clinical use Magro, Bianca Zuccaro, Valentina Novelli, Luca Zileri, Lorenzo Celsa, Ciro Raimondi, Federico Gori, Mauro Cammà, Giulia Battaglia, Salvatore Genova, Vincenzo Giuseppe Paris, Laura Tacelli, Matteo Mancarella, Francesco Antonio Enea, Marco Attanasio, Massimo Senni, Michele Di Marco, Fabiano Lorini, Luca Ferdinando Fagiuoli, Stefano Bruno, Raffaele Cammà, Calogero Gasbarrini, Antonio PLoS One Research Article BACKGROUNDS: Validated tools for predicting individual in-hospital mortality of COVID-19 are lacking. We aimed to develop and to validate a simple clinical prediction rule for early identification of in-hospital mortality of patients with COVID-19. METHODS AND FINDINGS: We enrolled 2191 consecutive hospitalized patients with COVID-19 from three Italian dedicated units (derivation cohort: 1810 consecutive patients from Bergamo and Pavia units; validation cohort: 381 consecutive patients from Rome unit). The outcome was in-hospital mortality. Fine and Gray competing risks multivariate model (with discharge as a competing event) was used to develop a prediction rule for in-hospital mortality. Discrimination and calibration were assessed by the area under the receiver operating characteristic curve (AUC) and by Brier score in both the derivation and validation cohorts. Seven variables were independent risk factors for in-hospital mortality: age (Hazard Ratio [HR] 1.08, 95% Confidence Interval [CI] 1.07–1.09), male sex (HR 1.62, 95%CI 1.30–2.00), duration of symptoms before hospital admission <10 days (HR 1.72, 95%CI 1.39–2.12), diabetes (HR 1.21, 95%CI 1.02–1.45), coronary heart disease (HR 1.40 95% CI 1.09–1.80), chronic liver disease (HR 1.78, 95%CI 1.16–2.72), and lactate dehydrogenase levels at admission (HR 1.0003, 95%CI 1.0002–1.0005). The AUC was 0.822 (95%CI 0.722–0.922) in the derivation cohort and 0.820 (95%CI 0.724–0.920) in the validation cohort with good calibration. The prediction rule is freely available as a web-app (COVID-CALC: https://sites.google.com/community.unipa.it/covid-19riskpredictions/c19-rp). CONCLUSIONS: A validated simple clinical prediction rule can promptly and accurately assess the risk for in-hospital mortality, improving triage and the management of patients with COVID-19. Public Library of Science 2021-01-14 /pmc/articles/PMC7808616/ /pubmed/33444411 http://dx.doi.org/10.1371/journal.pone.0245281 Text en © 2021 Magro et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Magro, Bianca
Zuccaro, Valentina
Novelli, Luca
Zileri, Lorenzo
Celsa, Ciro
Raimondi, Federico
Gori, Mauro
Cammà, Giulia
Battaglia, Salvatore
Genova, Vincenzo Giuseppe
Paris, Laura
Tacelli, Matteo
Mancarella, Francesco Antonio
Enea, Marco
Attanasio, Massimo
Senni, Michele
Di Marco, Fabiano
Lorini, Luca Ferdinando
Fagiuoli, Stefano
Bruno, Raffaele
Cammà, Calogero
Gasbarrini, Antonio
Predicting in-hospital mortality from Coronavirus Disease 2019: A simple validated app for clinical use
title Predicting in-hospital mortality from Coronavirus Disease 2019: A simple validated app for clinical use
title_full Predicting in-hospital mortality from Coronavirus Disease 2019: A simple validated app for clinical use
title_fullStr Predicting in-hospital mortality from Coronavirus Disease 2019: A simple validated app for clinical use
title_full_unstemmed Predicting in-hospital mortality from Coronavirus Disease 2019: A simple validated app for clinical use
title_short Predicting in-hospital mortality from Coronavirus Disease 2019: A simple validated app for clinical use
title_sort predicting in-hospital mortality from coronavirus disease 2019: a simple validated app for clinical use
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7808616/
https://www.ncbi.nlm.nih.gov/pubmed/33444411
http://dx.doi.org/10.1371/journal.pone.0245281
work_keys_str_mv AT magrobianca predictinginhospitalmortalityfromcoronavirusdisease2019asimplevalidatedappforclinicaluse
AT zuccarovalentina predictinginhospitalmortalityfromcoronavirusdisease2019asimplevalidatedappforclinicaluse
AT novelliluca predictinginhospitalmortalityfromcoronavirusdisease2019asimplevalidatedappforclinicaluse
AT zilerilorenzo predictinginhospitalmortalityfromcoronavirusdisease2019asimplevalidatedappforclinicaluse
AT celsaciro predictinginhospitalmortalityfromcoronavirusdisease2019asimplevalidatedappforclinicaluse
AT raimondifederico predictinginhospitalmortalityfromcoronavirusdisease2019asimplevalidatedappforclinicaluse
AT gorimauro predictinginhospitalmortalityfromcoronavirusdisease2019asimplevalidatedappforclinicaluse
AT cammagiulia predictinginhospitalmortalityfromcoronavirusdisease2019asimplevalidatedappforclinicaluse
AT battagliasalvatore predictinginhospitalmortalityfromcoronavirusdisease2019asimplevalidatedappforclinicaluse
AT genovavincenzogiuseppe predictinginhospitalmortalityfromcoronavirusdisease2019asimplevalidatedappforclinicaluse
AT parislaura predictinginhospitalmortalityfromcoronavirusdisease2019asimplevalidatedappforclinicaluse
AT tacellimatteo predictinginhospitalmortalityfromcoronavirusdisease2019asimplevalidatedappforclinicaluse
AT mancarellafrancescoantonio predictinginhospitalmortalityfromcoronavirusdisease2019asimplevalidatedappforclinicaluse
AT eneamarco predictinginhospitalmortalityfromcoronavirusdisease2019asimplevalidatedappforclinicaluse
AT attanasiomassimo predictinginhospitalmortalityfromcoronavirusdisease2019asimplevalidatedappforclinicaluse
AT sennimichele predictinginhospitalmortalityfromcoronavirusdisease2019asimplevalidatedappforclinicaluse
AT dimarcofabiano predictinginhospitalmortalityfromcoronavirusdisease2019asimplevalidatedappforclinicaluse
AT lorinilucaferdinando predictinginhospitalmortalityfromcoronavirusdisease2019asimplevalidatedappforclinicaluse
AT fagiuolistefano predictinginhospitalmortalityfromcoronavirusdisease2019asimplevalidatedappforclinicaluse
AT brunoraffaele predictinginhospitalmortalityfromcoronavirusdisease2019asimplevalidatedappforclinicaluse
AT cammacalogero predictinginhospitalmortalityfromcoronavirusdisease2019asimplevalidatedappforclinicaluse
AT gasbarriniantonio predictinginhospitalmortalityfromcoronavirusdisease2019asimplevalidatedappforclinicaluse