Cargando…
Source identification of infectious diseases in networks via label ranking
BACKGROUND: Outbreaks of infectious diseases would cause great losses to the human society. Source identification in networks has drawn considerable interest in order to understand and control the infectious disease propagation processes. Unsatisfactory accuracy and high time complexity are major ob...
Autores principales: | Zhou, Jianye, Jiang, Yuewen, Huang, Biqing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7808631/ https://www.ncbi.nlm.nih.gov/pubmed/33444390 http://dx.doi.org/10.1371/journal.pone.0245344 |
Ejemplares similares
-
Analysis of COVID-19 Prevention and Control Effects Based on the SEITRD Dynamic Model and Wuhan Epidemic Statistics
por: Zhang, Yusheng, et al.
Publicado: (2020) -
The application of network label propagation to rank biomarkers in genome-wide Alzheimer’s data
por: Stokes, Matthew E, et al.
Publicado: (2014) -
NeuRank: learning to rank with neural networks for drug–target interaction prediction
por: Wu, Xiujin, et al.
Publicado: (2021) -
Cautious Label-Wise Ranking with Constraint Satisfaction
por: Carranza-Alarcon, Yonatan-Carlos, et al.
Publicado: (2020) -
Network tuned multiple rank aggregation and applications to gene ranking
por: Wang, Wenhui, et al.
Publicado: (2015)