Cargando…
On transformative adaptive activation functions in neural networks for gene expression inference
Gene expression profiling was made more cost-effective by the NIH LINCS program that profiles only ∼1, 000 selected landmark genes and uses them to reconstruct the whole profile. The D–GEX method employs neural networks to infer the entire profile. However, the original D–GEX can be significantly im...
Autores principales: | Kunc, Vladimír, Kléma, Jiří |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7808640/ https://www.ncbi.nlm.nih.gov/pubmed/33444316 http://dx.doi.org/10.1371/journal.pone.0243915 |
Ejemplares similares
-
On tower and checkerboard neural network architectures for gene expression inference
por: Kunc, Vladimír, et al.
Publicado: (2020) -
Supervised inference of gene-regulatory networks
por: To, Cuong C, et al.
Publicado: (2008) -
ProteInfer, deep neural networks for protein functional inference
por: Sanderson, Theo, et al.
Publicado: (2023) -
Inferring the function performed by a recurrent neural network
por: Chalk, Matthew, et al.
Publicado: (2021) -
Canonical neural networks perform active inference
por: Isomura, Takuya, et al.
Publicado: (2022)