Cargando…
Predicting adult neuroscience intensive care unit admission from emergency department triage using a retrospective, tabular-free text machine learning approach
Early admission to the neurosciences intensive care unit (NSICU) is associated with improved patient outcomes. Natural language processing offers new possibilities for mining free text in electronic health record data. We sought to develop a machine learning model using both tabular and free text da...
Autores principales: | Klang, Eyal, Kummer, Benjamin R., Dangayach, Neha S., Zhong, Amy, Kia, M. Arash, Timsina, Prem, Cossentino, Ian, Costa, Anthony B., Levin, Matthew A., Oermann, Eric K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7809037/ https://www.ncbi.nlm.nih.gov/pubmed/33446890 http://dx.doi.org/10.1038/s41598-021-80985-3 |
Ejemplares similares
-
Predicting Adult Hospital Admission from Emergency Department Using Machine Learning: An Inclusive Gradient Boosting Model
por: Patel, Dhavalkumar, et al.
Publicado: (2022) -
Improve your Galaxy text life: The Query Tabular Tool
por: Johnson, James E., et al.
Publicado: (2019) -
MEWS++: Enhancing the Prediction of Clinical Deterioration in Admitted Patients through a Machine Learning Model
por: Kia, Arash, et al.
Publicado: (2020) -
Predicting hospital admission at emergency department triage using machine learning
por: Hong, Woo Suk, et al.
Publicado: (2018) -
Modeling the breakup of tabular icebergs
por: England, Mark R., et al.
Publicado: (2020)