Cargando…
Improving prognostic performance in resectable pancreatic ductal adenocarcinoma using radiomics and deep learning features fusion in CT images
As an analytic pipeline for quantitative imaging feature extraction and analysis, radiomics has grown rapidly in the past decade. On the other hand, recent advances in deep learning and transfer learning have shown significant potential in the quantitative medical imaging field, raising the research...
Autores principales: | Zhang, Yucheng, Lobo-Mueller, Edrise M., Karanicolas, Paul, Gallinger, Steven, Haider, Masoom A., Khalvati, Farzad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7809062/ https://www.ncbi.nlm.nih.gov/pubmed/33446870 http://dx.doi.org/10.1038/s41598-021-80998-y |
Ejemplares similares
-
Prognostic Value of CT Radiomic Features in Resectable Pancreatic Ductal Adenocarcinoma
por: Khalvati, Farzad, et al.
Publicado: (2019) -
Prognostic Value of Transfer Learning Based Features in Resectable Pancreatic Ductal Adenocarcinoma
por: Zhang, Yucheng, et al.
Publicado: (2020) -
CNN-based survival model for pancreatic ductal adenocarcinoma in medical imaging
por: Zhang, Yucheng, et al.
Publicado: (2020) -
CT texture features are associated with overall survival in pancreatic ductal adenocarcinoma – a quantitative analysis
por: Eilaghi, Armin, et al.
Publicado: (2017) -
Radiomics-based Prognosis Analysis for Non-Small Cell Lung Cancer
por: Zhang, Yucheng, et al.
Publicado: (2017)