Cargando…
CT image segmentation for inflamed and fibrotic lungs using a multi-resolution convolutional neural network
The purpose of this study was to develop a fully-automated segmentation algorithm, robust to various density enhancing lung abnormalities, to facilitate rapid quantitative analysis of computed tomography images. A polymorphic training approach is proposed, in which both specifically labeled left and...
Autores principales: | Gerard, Sarah E., Herrmann, Jacob, Xin, Yi, Martin, Kevin T., Rezoagli, Emanuele, Ippolito, Davide, Bellani, Giacomo, Cereda, Maurizio, Guo, Junfeng, Hoffman, Eric A., Kaczka, David W., Reinhardt, Joseph M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7809065/ https://www.ncbi.nlm.nih.gov/pubmed/33446781 http://dx.doi.org/10.1038/s41598-020-80936-4 |
Ejemplares similares
-
Unsupervised segmentation and quantification of COVID-19 lesions on computed Tomography scans using CycleGAN
por: Connell, Marc, et al.
Publicado: (2022) -
How I set up positive end-expiratory pressure: evidence- and physiology-based!
por: Rezoagli, Emanuele, et al.
Publicado: (2019) -
The Severe ARDS Generating Evidence (SAGE) Study: A Call for Action in the Daily Clinical Practice
por: Rezoagli, Emanuele, et al.
Publicado: (2021) -
Editorial: Lung monitoring in respiratory failure
por: Rezoagli, Emanuele, et al.
Publicado: (2023) -
Effects of Lung Injury on Regional Aeration and Expiratory Time Constants: Insights From Four-Dimensional Computed Tomography Image Registration
por: Herrmann, Jacob, et al.
Publicado: (2021)