Cargando…
Improved noninvasive fetal variant calling using standardized benchmarking approaches
The technology of noninvasive prenatal testing (NIPT) enables risk-free detection of genetic conditions in the fetus, by analysis of cell-free DNA (cfDNA) in maternal blood. For chromosomal abnormalities, NIPT often effectively replaces invasive tests (e.g. amniocentesis), although it is considered...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7809098/ https://www.ncbi.nlm.nih.gov/pubmed/33510858 http://dx.doi.org/10.1016/j.csbj.2020.12.032 |
_version_ | 1783637046232875008 |
---|---|
author | Rabinowitz, Tom Deri-Rozov, Shira Shomron, Noam |
author_facet | Rabinowitz, Tom Deri-Rozov, Shira Shomron, Noam |
author_sort | Rabinowitz, Tom |
collection | PubMed |
description | The technology of noninvasive prenatal testing (NIPT) enables risk-free detection of genetic conditions in the fetus, by analysis of cell-free DNA (cfDNA) in maternal blood. For chromosomal abnormalities, NIPT often effectively replaces invasive tests (e.g. amniocentesis), although it is considered as screening rather than diagnostics. Most recently, the NIPT has been applied to genome-wide, comprehensive genotyping of the fetus using cfDNA, i.e. identifying all its genetic variants and mutations. Previously, we suggested that NIPD should be treated as a special case of variant calling, and presented Hoobari, the first software tool for noninvasive fetal variant calling. Using a unique pipeline, we were able to comprehensively decipher the inheritance of SNPs and indels. A few caveats still exist in this pipeline. Performance was lower for indels and biparental loci (i.e. where both parents carry the same mutation), and performance was not uniform across the genome. Here we utilized standardized methods for benchmarking of variant calling pipelines and applied them to noninvasive fetal variant calling. By using the best performing pipeline and by focusing on coding regions, we showed that noninvasive fetal genotyping greatly improves performance, particularly in indels and biparental loci. These results emphasize the importance of using widely accepted concepts to describe the challenge of genome-wide NIPT of point mutations; and demonstrate a benchmarking process for the first time in this field. This study brings genome-wide and complete NIPD closer to the clinic; while potentially alleviating uncertainty and anxiety during pregnancy, and promoting informed choices among families and physicians. |
format | Online Article Text |
id | pubmed-7809098 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Research Network of Computational and Structural Biotechnology |
record_format | MEDLINE/PubMed |
spelling | pubmed-78090982021-01-27 Improved noninvasive fetal variant calling using standardized benchmarking approaches Rabinowitz, Tom Deri-Rozov, Shira Shomron, Noam Comput Struct Biotechnol J Research Article The technology of noninvasive prenatal testing (NIPT) enables risk-free detection of genetic conditions in the fetus, by analysis of cell-free DNA (cfDNA) in maternal blood. For chromosomal abnormalities, NIPT often effectively replaces invasive tests (e.g. amniocentesis), although it is considered as screening rather than diagnostics. Most recently, the NIPT has been applied to genome-wide, comprehensive genotyping of the fetus using cfDNA, i.e. identifying all its genetic variants and mutations. Previously, we suggested that NIPD should be treated as a special case of variant calling, and presented Hoobari, the first software tool for noninvasive fetal variant calling. Using a unique pipeline, we were able to comprehensively decipher the inheritance of SNPs and indels. A few caveats still exist in this pipeline. Performance was lower for indels and biparental loci (i.e. where both parents carry the same mutation), and performance was not uniform across the genome. Here we utilized standardized methods for benchmarking of variant calling pipelines and applied them to noninvasive fetal variant calling. By using the best performing pipeline and by focusing on coding regions, we showed that noninvasive fetal genotyping greatly improves performance, particularly in indels and biparental loci. These results emphasize the importance of using widely accepted concepts to describe the challenge of genome-wide NIPT of point mutations; and demonstrate a benchmarking process for the first time in this field. This study brings genome-wide and complete NIPD closer to the clinic; while potentially alleviating uncertainty and anxiety during pregnancy, and promoting informed choices among families and physicians. Research Network of Computational and Structural Biotechnology 2020-12-31 /pmc/articles/PMC7809098/ /pubmed/33510858 http://dx.doi.org/10.1016/j.csbj.2020.12.032 Text en © 2020 The Author(s) http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Article Rabinowitz, Tom Deri-Rozov, Shira Shomron, Noam Improved noninvasive fetal variant calling using standardized benchmarking approaches |
title | Improved noninvasive fetal variant calling using standardized benchmarking approaches |
title_full | Improved noninvasive fetal variant calling using standardized benchmarking approaches |
title_fullStr | Improved noninvasive fetal variant calling using standardized benchmarking approaches |
title_full_unstemmed | Improved noninvasive fetal variant calling using standardized benchmarking approaches |
title_short | Improved noninvasive fetal variant calling using standardized benchmarking approaches |
title_sort | improved noninvasive fetal variant calling using standardized benchmarking approaches |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7809098/ https://www.ncbi.nlm.nih.gov/pubmed/33510858 http://dx.doi.org/10.1016/j.csbj.2020.12.032 |
work_keys_str_mv | AT rabinowitztom improvednoninvasivefetalvariantcallingusingstandardizedbenchmarkingapproaches AT derirozovshira improvednoninvasivefetalvariantcallingusingstandardizedbenchmarkingapproaches AT shomronnoam improvednoninvasivefetalvariantcallingusingstandardizedbenchmarkingapproaches |