Cargando…
G-computation and machine learning for estimating the causal effects of binary exposure statuses on binary outcomes
In clinical research, there is a growing interest in the use of propensity score-based methods to estimate causal effects. G-computation is an alternative because of its high statistical power. Machine learning is also increasingly used because of its possible robustness to model misspecification. I...
Autores principales: | Le Borgne, Florent, Chatton, Arthur, Léger, Maxime, Lenain, Rémi, Foucher, Yohann |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7809122/ https://www.ncbi.nlm.nih.gov/pubmed/33446866 http://dx.doi.org/10.1038/s41598-021-81110-0 |
Ejemplares similares
-
G-computation, propensity score-based methods, and targeted maximum likelihood estimator for causal inference with different covariates sets: a comparative simulation study
por: Chatton, Arthur, et al.
Publicado: (2020) -
Mendelian randomization with a binary exposure variable: interpretation and presentation of causal estimates
por: Burgess, Stephen, et al.
Publicado: (2018) -
Estimating causal effects of time-dependent exposures on a binary endpoint in a high-dimensional setting
por: Asvatourian, Vahé, et al.
Publicado: (2018) -
Estimation of causal effects of multiple treatments in observational studies with a binary outcome
por: Hu, Liangyuan, et al.
Publicado: (2020) -
Parametric-Regression–Based Causal Mediation Analysis of Binary Outcomes and Binary Mediators: Moving Beyond the Rareness or Commonness of the Outcome
por: Samoilenko, Mariia, et al.
Publicado: (2021)