Cargando…
Applying machine learning to predict viral assembly for adeno-associated virus capsid libraries
Machine learning (ML) can aid in novel discoveries in the field of viral gene therapy. Specifically, big data gathered through next-generation sequencing (NGS) of complex capsid libraries is an especially prominent source of lost potential in data analysis and prediction. Furthermore, adeno-associat...
Autores principales: | Marques, Andrew D., Kummer, Michael, Kondratov, Oleksandr, Banerjee, Arunava, Moskalenko, Oleksandr, Zolotukhin, Sergei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Gene & Cell Therapy
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7809249/ https://www.ncbi.nlm.nih.gov/pubmed/33511242 http://dx.doi.org/10.1016/j.omtm.2020.11.017 |
Ejemplares similares
-
Exploring the Comprehensive Kozak Sequence Landscape for AAV Production in Sf9 System
por: Kondratov, Oleksandr, et al.
Publicado: (2023) -
Removal of Endotoxin from rAAV Samples Using a Simple Detergent-Based Protocol
por: Kondratova, Liudmyla, et al.
Publicado: (2019) -
Adeno-associated virus capsid assembly is divergent and stochastic
por: Wörner, Tobias P., et al.
Publicado: (2021) -
Adeno-associated virus capsid protein expression in Escherichia coli and chemically defined capsid assembly
por: Le, Dinh To, et al.
Publicado: (2019) -
Comparison of analytical techniques to quantitate the capsid content of adeno-associated viral vectors
por: Werle, Amanda K., et al.
Publicado: (2021)