Cargando…
Tomato detection based on modified YOLOv3 framework
Fruit detection forms a vital part of the robotic harvesting platform. However, uneven environment conditions, such as branch and leaf occlusion, illumination variation, clusters of tomatoes, shading, and so on, have made fruit detection very challenging. In order to solve these problems, a modified...
Autor principal: | Lawal, Mubashiru Olarewaju |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7809275/ https://www.ncbi.nlm.nih.gov/pubmed/33446897 http://dx.doi.org/10.1038/s41598-021-81216-5 |
Ejemplares similares
-
YOLOv5-LiNet: A lightweight network for fruits instance segmentation
por: Lawal, Olarewaju Mubashiru
Publicado: (2023) -
An improved YOLOv5s model using feature concatenation with attention mechanism for real-time fruit detection and counting
por: Lawal, Olarewaju Mubashiru, et al.
Publicado: (2023) -
A simplified network topology for fruit detection, counting and mobile-phone deployment
por: Lawal, Olarewaju Mubashiru, et al.
Publicado: (2023) -
YOLO-Tomato: A Robust Algorithm for Tomato Detection Based on YOLOv3
por: Liu, Guoxu, et al.
Publicado: (2020) -
Tomato Maturity Detection and Counting Model Based on MHSA-YOLOv8
por: Li, Ping, et al.
Publicado: (2023)