Cargando…

Introduction of Varroa destructor has not altered honey bee queen mating success in the Hawaiian archipelago

Beekeepers struggle to minimize the mortality of their colonies as a consequence of the parasitic mite Varroa destructor in order to maintain a sustainable managed pollinator population. However, little is known about how varroa mites might diminish local populations of honey bee males (drones) that...

Descripción completa

Detalles Bibliográficos
Autores principales: Rusert, Lauren M., Pettis, Jeffrey S., Tarpy, David R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7809478/
https://www.ncbi.nlm.nih.gov/pubmed/33446846
http://dx.doi.org/10.1038/s41598-020-80525-5
Descripción
Sumario:Beekeepers struggle to minimize the mortality of their colonies as a consequence of the parasitic mite Varroa destructor in order to maintain a sustainable managed pollinator population. However, little is known about how varroa mites might diminish local populations of honey bee males (drones) that might affect the mating success of queens. As one of the world’s last localities invaded by varroa mites, the Hawaiian Islands offer a unique opportunity to examine this question by comparing queens mated on mite-infested and mite-free islands. We raised queen bees on four Hawaiian Islands (Kaua‘i, O‘ahu, Maui, and Hawai‘i) and subsequently collected their offspring to determine queen mating frequency and insemination success. No significant difference for mating success was found between the islands with and without varroa mites, and relatively high levels of polyandry was detected overall. We also found a significant association between the number of sperm stored in the queens’ spermathecae and the number of managed colonies within the localities of the queens mated. Our findings suggest that varroa mites, as they currently occur in Hawai‘i, may not significantly reduce mating success of honey bee queens, which provides insight for both the reproductive biology of honey bees as well as the apiculture industry in Hawai‘i.