Cargando…
Antimicrobial and anti-adhesive properties of carbon nanotube-based surfaces for medical applications: a systematic review
Although high-performance carbon materials are widely used in surface engineering, with emphasis on carbon nanotubes (CNTs), the application of CNT nanocomposites on medical surfaces is poorly documented. In this study, we aimed to evaluate the antimicrobial and anti-adhesive properties of CNT-based...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7809508/ https://www.ncbi.nlm.nih.gov/pubmed/33490909 http://dx.doi.org/10.1016/j.isci.2020.102001 |
Sumario: | Although high-performance carbon materials are widely used in surface engineering, with emphasis on carbon nanotubes (CNTs), the application of CNT nanocomposites on medical surfaces is poorly documented. In this study, we aimed to evaluate the antimicrobial and anti-adhesive properties of CNT-based surfaces. For this purpose, a PRISMA-oriented systematic review was conducted based on predefined criteria and 59 studies were selected for the qualitative analysis. Results from the analyzed studies suggest that surfaces containing modified CNTs, and specially CNTs conjugated with different polymers, exhibited strong antimicrobial and anti-adhesive activities. These composites seem to preserve the CNT toxicity to microorganisms and promote CNT-cell interactions, as well as to protect them from nonspecific protein adsorption. However, CNTs cannot yet compete with the conventional strategies to fight biofilms as their toxicity profile on the human body has not been thoroughly addressed. This review can be helpful for the development of new engineered medical surfaces. |
---|