Cargando…

Accurate detection of Covid-19 patients based on Feature Correlated Naïve Bayes (FCNB) classification strategy

The outbreak of Coronavirus (COVID-19) has spread between people around the world at a rapid rate so that the number of infected people and deaths is increasing quickly every day. Accordingly, it is a vital process to detect positive cases at an early stage for treatment and controlling the disease...

Descripción completa

Detalles Bibliográficos
Autores principales: Mansour, Nehal A., Saleh, Ahmed I., Badawy, Mahmoud, Ali, Hesham A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7809685/
https://www.ncbi.nlm.nih.gov/pubmed/33469467
http://dx.doi.org/10.1007/s12652-020-02883-2
Descripción
Sumario:The outbreak of Coronavirus (COVID-19) has spread between people around the world at a rapid rate so that the number of infected people and deaths is increasing quickly every day. Accordingly, it is a vital process to detect positive cases at an early stage for treatment and controlling the disease from spreading. Several medical tests had been applied for COVID-19 detection in certain injuries, but with limited efficiency. In this study, a new COVID-19 diagnosis strategy called Feature Correlated Naïve Bayes (FCNB) has been introduced. The FCNB consists of four phases, which are; Feature Selection Phase (FSP), Feature Clustering Phase (FCP), Master Feature Weighting Phase (MFWP), and Feature Correlated Naïve Bayes Phase (FCNBP). The FSP selects only the most effective features among the extracted features from laboratory tests for both COVID-19 patients and non-COVID-19 people by using the Genetic Algorithm as a wrapper method. The FCP constructs many clusters of features based on the selected features from FSP by using a novel clustering technique. These clusters of features are called Master Features (MFs) in which each MF contains a set of dependent features. The MFWP assigns a weight value to each MF by using a new weight calculation method. The FCNBP is used to classify patients based on the weighted Naïve Bayes algorithm with many modifications as the correlation between features. The proposed FCNB strategy has been compared to recent competitive techniques. Experimental results have proven the effectiveness of the FCNB strategy in which it outperforms recent competitive techniques because it achieves the maximum (99%) detection accuracy.