Cargando…

Identifying pre-outbreak signals of hand, foot and mouth disease based on landscape dynamic network marker

BACKGROUND: The high incidence, seasonal pattern and frequent outbreaks of hand, foot and mouth disease (HFMD) represent a threat for billions of children around the world. Detecting pre-outbreak signals of HFMD facilitates the timely implementation of appropriate control measures. However, real-tim...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Xuhang, Xie, Rong, Liu, Zhengrong, Pan, Yucong, Liu, Rui, Chen, Pei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7809731/
https://www.ncbi.nlm.nih.gov/pubmed/33446118
http://dx.doi.org/10.1186/s12879-020-05709-w
Descripción
Sumario:BACKGROUND: The high incidence, seasonal pattern and frequent outbreaks of hand, foot and mouth disease (HFMD) represent a threat for billions of children around the world. Detecting pre-outbreak signals of HFMD facilitates the timely implementation of appropriate control measures. However, real-time prediction of HFMD outbreaks is usually challenging because of its complexity intertwining both biological systems and social systems. RESULTS: By mining the dynamical information from city networks and horizontal high-dimensional data, we developed the landscape dynamic network marker (L-DNM) method to detect pre-outbreak signals prior to the catastrophic transition into HFMD outbreaks. In addition, we set up multi-level early warnings to achieve the purpose of distinguishing the outbreak scale. Specifically, we collected the historical information of clinic visits caused by HFMD infection between years 2009 and 2018 respectively from public records of Tokyo, Hokkaido, and Osaka, Japan. When applied to the city networks we modelled, our method successfully identified pre-outbreak signals in an average 5 weeks ahead of the HFMD outbreak. Moreover, from the performance comparisons with other methods, it is seen that the L-DNM based system performs better when given only the records of clinic visits. CONCLUSIONS: The study on the dynamical changes of clinic visits in local district networks reveals the dynamic or landscapes of HFMD spread at the network level. Moreover, the results of this study can be used as quantitative references for disease control during the HFMD outbreak seasons. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12879-020-05709-w.