Cargando…
Multi-classifier-based identification of COVID-19 from chest computed tomography using generalizable and interpretable radiomics features
PURPOSE: To investigate the efficacy of radiomics in diagnosing patients with coronavirus disease (COVID-19) and other types of viral pneumonia with clinical symptoms and CT signs similar to those of COVID-19. METHODS: Between 18 January 2020 and 20 May 2020, 110 SARS-CoV-2 positive and 108 SARS-CoV...
Autores principales: | Wang, Lu, Kelly, Brendan, Lee, Edward H., Wang, Hongmei, Zheng, Jimmy, Zhang, Wei, Halabi, Safwan, Liu, Jining, Tian, Yulong, Han, Baoqin, Huang, Chuanbin, Yeom, Kristen W., Deng, Kexue, Song, Jiangdian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Author(s). Published by Elsevier B.V.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7810032/ https://www.ncbi.nlm.nih.gov/pubmed/33497881 http://dx.doi.org/10.1016/j.ejrad.2021.109552 |
Ejemplares similares
-
Decoding COVID-19 pneumonia: comparison of deep learning and radiomics CT image signatures
por: Wang, Hongmei, et al.
Publicado: (2020) -
Correction to: Decoding COVID-19 pneumonia: comparison of deep learning and radiomics CT image signatures
por: Wang, Hongmei, et al.
Publicado: (2021) -
End-to-end automatic differentiation of the coronavirus disease 2019 (COVID-19) from viral pneumonia based on chest CT
por: Song, Jiangdian, et al.
Publicado: (2020) -
Correction to: End-to-end automatic differentiation of the coronavirus disease 2019 (COVID-19) from viral pneumonia based on chest CT
por: Song, Jiangdian, et al.
Publicado: (2021) -
Predicting Sex From EEG: Validity and Generalizability of Deep-Learning-Based Interpretable Classifier
por: Bučková, Barbora, et al.
Publicado: (2020)