Cargando…
Optimizing the synthesis of clinical trial data using sequential trees
OBJECTIVE: With the growing demand for sharing clinical trial data, scalable methods to enable privacy protective access to high-utility data are needed. Data synthesis is one such method. Sequential trees are commonly used to synthesize health data. It is hypothesized that the utility of the genera...
Autores principales: | Emam, Khaled El, Mosquera, Lucy, Zheng, Chaoyi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7810457/ https://www.ncbi.nlm.nih.gov/pubmed/33186440 http://dx.doi.org/10.1093/jamia/ocaa249 |
Ejemplares similares
-
Validating a membership disclosure metric for synthetic health data
por: El Emam, Khaled, et al.
Publicado: (2022) -
Evaluating the utility of synthetic COVID-19 case data
por: El Emam, Khaled, et al.
Publicado: (2021) -
Can synthetic data be a proxy for real clinical trial data? A validation study
por: Azizi, Zahra, et al.
Publicado: (2021) -
Evaluating Identity Disclosure Risk in Fully Synthetic Health Data: Model Development and Validation
por: El Emam, Khaled, et al.
Publicado: (2020) -
A secure protocol for protecting the identity of providers when disclosing data for disease surveillance
por: El Emam, Khaled, et al.
Publicado: (2011)