Cargando…
Text Semantic Classification of Long Discourses Based on Neural Networks with Improved Focal Loss
Semantic classification of Chinese long discourses is an important and challenging task. Discourse text is high-dimensional and sparse. Furthermore, when the number of classes of dataset is large, the data distribution will be seriously imbalanced. In solving these problems, we propose a novel end-t...
Autores principales: | Jiang, Dan, He, Jin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7810536/ https://www.ncbi.nlm.nih.gov/pubmed/33505454 http://dx.doi.org/10.1155/2021/8845362 |
Ejemplares similares
-
Measuring populist discourse using semantic text analysis: a comment
por: Popping, Roel
Publicado: (2017) -
Detection of medical text semantic similarity based on convolutional neural network
por: Zheng, Tao, et al.
Publicado: (2019) -
Text and discourse analysis /
por: Salkie, Raphael
Publicado: (1995) -
A Deep Neural Network Ensemble Classifier with Focal Loss for Automatic Arrhythmia Classification
por: Wu, Han, et al.
Publicado: (2022) -
Methods of text and discourse analysis /
Publicado: (2000)