Cargando…
On the quasi-isometric and bi-Lipschitz classification of 3D Riemannian Lie groups
This note is concerned with the geometric classification of connected Lie groups of dimension three or less, endowed with left-invariant Riemannian metrics. On the one hand, assembling results from the literature, we give a review of the complete classification of such groups up to quasi-isometries...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7810620/ https://www.ncbi.nlm.nih.gov/pubmed/33505086 http://dx.doi.org/10.1007/s10711-020-00532-8 |
Sumario: | This note is concerned with the geometric classification of connected Lie groups of dimension three or less, endowed with left-invariant Riemannian metrics. On the one hand, assembling results from the literature, we give a review of the complete classification of such groups up to quasi-isometries and we compare the quasi-isometric classification with the bi-Lipschitz classification. On the other hand, we study the problem whether two quasi-isometrically equivalent Lie groups may be made isometric if equipped with suitable left-invariant Riemannian metrics. We show that this is the case for three-dimensional simply connected groups, but it is not true in general for multiply connected groups. The counterexample also demonstrates that ‘may be made isometric’ is not a transitive relation. |
---|