Cargando…
On the quasi-isometric and bi-Lipschitz classification of 3D Riemannian Lie groups
This note is concerned with the geometric classification of connected Lie groups of dimension three or less, endowed with left-invariant Riemannian metrics. On the one hand, assembling results from the literature, we give a review of the complete classification of such groups up to quasi-isometries...
Autores principales: | Fässler, Katrin, Le Donne, Enrico |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7810620/ https://www.ncbi.nlm.nih.gov/pubmed/33505086 http://dx.doi.org/10.1007/s10711-020-00532-8 |
Ejemplares similares
-
Lipschitz Carnot-Carathéodory Structures and their Limits
por: Antonelli, Gioacchino, et al.
Publicado: (2022) -
Bi-Lipschitz Parameterization of Surfaces
por: Bonk, M, et al.
Publicado: (2002) -
Classification of Lipschitz mappings
por: Piasecki, Lukasz
Publicado: (2013) -
Isometric embedding of Riemannian manifolds in Euclidean spaces
por: Han, Qing, et al.
Publicado: (2014) -
Polynomial and horizontally polynomial functions on Lie groups
por: Antonelli, Gioacchino, et al.
Publicado: (2022)