Cargando…
Connectivity-informed drainage network generation using deep convolution generative adversarial networks
Stochastic network modeling is often limited by high computational costs to generate a large number of networks enough for meaningful statistical evaluation. In this study, Deep Convolutional Generative Adversarial Networks (DCGANs) were applied to quickly reproduce drainage networks from the alread...
Autores principales: | Kim, Sung Eun, Seo, Yongwon, Hwang, Junshik, Yoon, Hongkyu, Lee, Jonghyun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7810735/ https://www.ncbi.nlm.nih.gov/pubmed/33452322 http://dx.doi.org/10.1038/s41598-020-80300-6 |
Ejemplares similares
-
Deep Convolutional Generative Adversarial Network with LSTM for ECG Denoising
por: Wang, Huidong, et al.
Publicado: (2023) -
Stock Price Forecasting by a Deep Convolutional Generative Adversarial Network
por: Staffini, Alessio
Publicado: (2022) -
DGCNN: deep convolutional generative adversarial network based convolutional neural network for diagnosis of COVID-19
por: Laddha, Saloni, et al.
Publicado: (2022) -
Breast Ultrasound Image Synthesis using Deep Convolutional Generative Adversarial Networks
por: Fujioka, Tomoyuki, et al.
Publicado: (2019) -
Improved Classification of White Blood Cells with the Generative Adversarial Network and Deep Convolutional Neural Network
por: Almezhghwi, Khaled, et al.
Publicado: (2020)