Cargando…

Melatonin attenuated the behavioral despair induced by acute neurogenic stress through blockade of N-methyl D-aspartate receptors in mice

It has been well documented that administration of melatonin could reveal antidepressant-like effect in rodents. However, the protective effect of melatonin on stress-induced depression/anxiety and its underlying mechanism is yet to be understood. In this regard, in the current study, acute foot-sho...

Descripción completa

Detalles Bibliográficos
Autores principales: Hajmirzaeyian, Arwin, Chamanara, Mohsen, Rashidian, Amir, Shakyba, Saied, Nassireslami, Ehsan, Akhavan-Sigari, Reza
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7810776/
https://www.ncbi.nlm.nih.gov/pubmed/33490672
http://dx.doi.org/10.1016/j.heliyon.2021.e05900
Descripción
Sumario:It has been well documented that administration of melatonin could reveal antidepressant-like effect in rodents. However, the protective effect of melatonin on stress-induced depression/anxiety and its underlying mechanism is yet to be understood. In this regard, in the current study, acute foot-shock stress (FSS) was used to evaluate the antidepressant-like effect of melatonin on neurogenic stress-induced depression in mice. Behavioral evaluation was done by using the forced swimming test (FST) and Open-field test (OFT). Melatonin, MK-801, and ketamine (NMDA receptor antagonists), and NMDA (NMDA receptor agonist) were used to elucidate any association between melatonin and NMDA pathway in behavioral despair induced by acute-FSS. Applying acute-FSS to mice significantly induced depressant-like behavior in FST without any significant impact on locomotor activity in the OFT. We observed that melatonin (dose-dependently) significantly improved the depressant-like effect of FSS, but it did not impact the locomotion in animals. Acute injection of MK-801 at sub-effective doses (0.01 mg/kg) or ketamine (0.1 mg/kg) potentiated the antidepressant-like effect of a sub-effective dose of melatonin. However, the sub-effective dose of NMDA (30 mg/kg) abolished the protective effect of melatonin on the behavioral profile of stressed animals. Our results could reflect the antidepressant-like effect of melatonin on neurogenic stress-induced depressive behaviors in mice. Also, our results showed that NMDA receptors could be involved in the antidepressant-like effect of melatonin.