Cargando…
Coupling machine learning and crop modeling improves crop yield prediction in the US Corn Belt
This study investigates whether coupling crop modeling and machine learning (ML) improves corn yield predictions in the US Corn Belt. The main objectives are to explore whether a hybrid approach (crop modeling + ML) would result in better predictions, investigate which combinations of hybrid models...
Autores principales: | Shahhosseini, Mohsen, Hu, Guiping, Huber, Isaiah, Archontoulis, Sotirios V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7810832/ https://www.ncbi.nlm.nih.gov/pubmed/33452349 http://dx.doi.org/10.1038/s41598-020-80820-1 |
Ejemplares similares
-
County-scale crop yield prediction by integrating crop simulation with machine learning models
por: Sajid, Saiara Samira, et al.
Publicado: (2022) -
Forecasting Corn Yield With Machine Learning Ensembles
por: Shahhosseini, Mohsen, et al.
Publicado: (2020) -
Corn Yield Prediction With Ensemble CNN-DNN
por: Shahhosseini, Mohsen, et al.
Publicado: (2021) -
An interaction regression model for crop yield prediction
por: Ansarifar, Javad, et al.
Publicado: (2021) -
Modeling Long-Term Corn Yield Response to Nitrogen Rate and Crop Rotation
por: Puntel, Laila A., et al.
Publicado: (2016)