Cargando…
A fourth-generation high-dimensional neural network potential with accurate electrostatics including non-local charge transfer
Machine learning potentials have become an important tool for atomistic simulations in many fields, from chemistry via molecular biology to materials science. Most of the established methods, however, rely on local properties and are thus unable to take global changes in the electronic structure int...
Autores principales: | Ko, Tsz Wai, Finkler, Jonas A., Goedecker, Stefan, Behler, Jörg |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7811002/ https://www.ncbi.nlm.nih.gov/pubmed/33452239 http://dx.doi.org/10.1038/s41467-020-20427-2 |
Ejemplares similares
-
Experimental absence of the non-perovskite ground state phases of MaPbI(3) explained by a Funnel Hopping Monte Carlo study based on a neural network potential
por: Finkler, Jonas A., et al.
Publicado: (2022) -
Principles of isomer stability in small clusters
por: Fisicaro, Giuseppe, et al.
Publicado: (2023) -
High-dimensional neural network potentials for accurate vibrational frequencies: the formic acid dimer benchmark
por: Shanavas Rasheeda, Dilshana, et al.
Publicado: (2022) -
Accurate Probabilities for Highly Activated Reaction
of Polyatomic Molecules on Surfaces Using a High-Dimensional Neural
Network Potential: CHD(3) + Cu(111)
por: Gerrits, N., et al.
Publicado: (2019) -
Accurate Neural Network Description of Surface Phonons
in Reactive Gas–Surface Dynamics: N(2) + Ru(0001)
por: Shakouri, Khosrow, et al.
Publicado: (2017)