Cargando…

Nonconventional driving force for selective oxidative C–C coupling reaction due to concurrent and curious formation of Ag(0)

Is it possible to ‘explore’ metal’s intrinsic property—a cohesive interaction—which naturally transform M(0) into an aggregate or a particle or film for driving oxidative C–C bond formation? With this intention, reduction of [Ag(NH(3))(2)](+) to Ag(0) with concurrent oxidation of different phenols/n...

Descripción completa

Detalles Bibliográficos
Autores principales: Bhanderi, Khushboo, Ghalsasi, Prasanna S., Inoue, Katsuya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7811016/
https://www.ncbi.nlm.nih.gov/pubmed/33452369
http://dx.doi.org/10.1038/s41598-021-81020-1
Descripción
Sumario:Is it possible to ‘explore’ metal’s intrinsic property—a cohesive interaction—which naturally transform M(0) into an aggregate or a particle or film for driving oxidative C–C bond formation? With this intention, reduction of [Ag(NH(3))(2)](+) to Ag(0) with concurrent oxidation of different phenols/naphthols to biphenyls was undertaken. The work is originated during careful observation of an undergraduate experiment—Tollens’ test—where silver mirror film deposition takes place on the walls of borosilicate glass test tube. When the same reaction was carried out in polypropylene (plastic-Eppendorf) tube, we observed aggregation of Ag(0) leading to floating Ag-particles but not silver film deposition. This prompted us to carry out challenging cross-coupling reaction by ONLY changing the surface of the reaction flask from glass to plastic to silicones. To our surprise, we observed good selective oxidative homo-coupling on Teflon surface while cross-coupling in Eppendorf vial. Thus, we propose that the formation of biphenyl is driven by the macroscopic growth of Ag(0) into [Ag-particle] orchestrated by Ag…Ag cohesive interaction. To validate results, experiments were also performed on gram scale. More importantly, oxidation of β-naphthol carried out in quartz (chiral) tube which yielded slight enantioselective excess of BINOL. Details are discussed.