Cargando…
Identification of a Transcriptomic Network Underlying the Wrinkly and Smooth Phenotypes of Vibrio fischeri
Vibrio fischeri is a cosmopolitan marine bacterium that oftentimes displays different colony morphologies, switching from a smooth to a wrinkly phenotype in order to adapt to changes in the environment. This wrinkly phenotype has also been associated with increased biofilm formation, an essential ch...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7811199/ https://www.ncbi.nlm.nih.gov/pubmed/33199286 http://dx.doi.org/10.1128/JB.00259-20 |
_version_ | 1783637450364551168 |
---|---|
author | Chavez-Dozal, Alba Soto, William Nishiguchi, Michele K. |
author_facet | Chavez-Dozal, Alba Soto, William Nishiguchi, Michele K. |
author_sort | Chavez-Dozal, Alba |
collection | PubMed |
description | Vibrio fischeri is a cosmopolitan marine bacterium that oftentimes displays different colony morphologies, switching from a smooth to a wrinkly phenotype in order to adapt to changes in the environment. This wrinkly phenotype has also been associated with increased biofilm formation, an essential characteristic for V. fischeri to adhere to substrates, to suspended debris, and within the light organs of sepiolid squids. Elevated levels of biofilm formation are correlated with increased microbial survival of exposure to environmental stressors and the ability to expand niche breadth. Since V. fischeri has a biphasic life history strategy between its free-living and symbiotic states, we were interested in whether the wrinkly morphotype demonstrated differences in its expression profile in comparison to the naturally occurring and more common smooth variant. We show that genes involved in major biochemical cascades, including those involved in protein sorting, oxidative stress, and membrane transport, play a role in the wrinkly phenotype. Interestingly, only a few unique genes are specifically involved in macromolecule biosynthesis in the wrinkly phenotype, which underlies the importance of other pathways utilized for adaptation under the conditions in which Vibrio bacteria are producing this change in phenotype. These results provide the first comprehensive analysis of the complex form of genetic activation that underlies the diversity in morphologies of V. fischeri when switching between two different colony morphotypes, each representing a unique biofilm ecotype. IMPORTANCE The wrinkly bacterial colony phenotype has been associated with increased squid host colonization in V. fischeri. The significance of our research is in identifying the genetic mechanisms that are responsible for heightened biofilm formation in V. fischeri. This report also advances our understanding of gene regulation in V. fischeri and brings to the forefront a number of previously overlooked genetic networks. Several loci that were identified in this study were not previously known to be associated with biofilm formation in V. fischeri. |
format | Online Article Text |
id | pubmed-7811199 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-78111992021-02-05 Identification of a Transcriptomic Network Underlying the Wrinkly and Smooth Phenotypes of Vibrio fischeri Chavez-Dozal, Alba Soto, William Nishiguchi, Michele K. J Bacteriol Research Article Vibrio fischeri is a cosmopolitan marine bacterium that oftentimes displays different colony morphologies, switching from a smooth to a wrinkly phenotype in order to adapt to changes in the environment. This wrinkly phenotype has also been associated with increased biofilm formation, an essential characteristic for V. fischeri to adhere to substrates, to suspended debris, and within the light organs of sepiolid squids. Elevated levels of biofilm formation are correlated with increased microbial survival of exposure to environmental stressors and the ability to expand niche breadth. Since V. fischeri has a biphasic life history strategy between its free-living and symbiotic states, we were interested in whether the wrinkly morphotype demonstrated differences in its expression profile in comparison to the naturally occurring and more common smooth variant. We show that genes involved in major biochemical cascades, including those involved in protein sorting, oxidative stress, and membrane transport, play a role in the wrinkly phenotype. Interestingly, only a few unique genes are specifically involved in macromolecule biosynthesis in the wrinkly phenotype, which underlies the importance of other pathways utilized for adaptation under the conditions in which Vibrio bacteria are producing this change in phenotype. These results provide the first comprehensive analysis of the complex form of genetic activation that underlies the diversity in morphologies of V. fischeri when switching between two different colony morphotypes, each representing a unique biofilm ecotype. IMPORTANCE The wrinkly bacterial colony phenotype has been associated with increased squid host colonization in V. fischeri. The significance of our research is in identifying the genetic mechanisms that are responsible for heightened biofilm formation in V. fischeri. This report also advances our understanding of gene regulation in V. fischeri and brings to the forefront a number of previously overlooked genetic networks. Several loci that were identified in this study were not previously known to be associated with biofilm formation in V. fischeri. American Society for Microbiology 2021-01-11 /pmc/articles/PMC7811199/ /pubmed/33199286 http://dx.doi.org/10.1128/JB.00259-20 Text en Copyright © 2021 Chavez-Dozal et al. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Article Chavez-Dozal, Alba Soto, William Nishiguchi, Michele K. Identification of a Transcriptomic Network Underlying the Wrinkly and Smooth Phenotypes of Vibrio fischeri |
title | Identification of a Transcriptomic Network Underlying the Wrinkly and Smooth Phenotypes of Vibrio fischeri |
title_full | Identification of a Transcriptomic Network Underlying the Wrinkly and Smooth Phenotypes of Vibrio fischeri |
title_fullStr | Identification of a Transcriptomic Network Underlying the Wrinkly and Smooth Phenotypes of Vibrio fischeri |
title_full_unstemmed | Identification of a Transcriptomic Network Underlying the Wrinkly and Smooth Phenotypes of Vibrio fischeri |
title_short | Identification of a Transcriptomic Network Underlying the Wrinkly and Smooth Phenotypes of Vibrio fischeri |
title_sort | identification of a transcriptomic network underlying the wrinkly and smooth phenotypes of vibrio fischeri |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7811199/ https://www.ncbi.nlm.nih.gov/pubmed/33199286 http://dx.doi.org/10.1128/JB.00259-20 |
work_keys_str_mv | AT chavezdozalalba identificationofatranscriptomicnetworkunderlyingthewrinklyandsmoothphenotypesofvibriofischeri AT sotowilliam identificationofatranscriptomicnetworkunderlyingthewrinklyandsmoothphenotypesofvibriofischeri AT nishiguchimichelek identificationofatranscriptomicnetworkunderlyingthewrinklyandsmoothphenotypesofvibriofischeri |