Cargando…

Post-calving umbilical cord tissue offcut: A potential source for the isolation of bovine mesenchymal stem cells

BACKGROUND AND AIM: Veterinary health care is an emergent area in animal sciences and innovative therapeutic approaches happen to be imperative in the present days. In view of the importance of cattle health and production, it is necessary to take up contemporary approach of stem cell therapy in thi...

Descripción completa

Detalles Bibliográficos
Autores principales: Debbarma, Parishma, Mondal, Tanmay, Manna, Camelia, Kumar, Kuldeep, Mukherjee, Joydip, Das, Bikash Chandra, Bag, Sadhan, Das, Kinsuk
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Veterinary World 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7811551/
https://www.ncbi.nlm.nih.gov/pubmed/33487997
http://dx.doi.org/10.14202/vetworld.2020.2772-2779
Descripción
Sumario:BACKGROUND AND AIM: Veterinary health care is an emergent area in animal sciences and innovative therapeutic approaches happen to be imperative in the present days. In view of the importance of cattle health and production, it is necessary to take up contemporary approach of stem cell therapy in this sector also. This study aimed to standardize an explant culture method of bovine umbilical tissue offcut to isolate mesenchymal stem cells (MSCs) because considerable efforts are required for ensuring easy accessibility and availability of MSCs in bulk quantity, as well as in establishing and characterizing the cell lines. MATERIALS AND METHODS: The umbilical cord (UC) tissue matrix offcut was collected after calving. A simplified in vitro cell isolation technique was followed to collect the emerged out cells from the explants of UC. Further, we expanded these isolated cells in vitro, observed its growth kinetics, and characterized to confirm as per the criterion of bovine MSCs. RESULTS: A considerable exponential growth rate of the UC-derived cells was noticed. In addition to their confirmation as MSCs, the cells also exhibited plastic adherent property and maintained the spindle-shaped morphology throughout the in vitro culture. The cultured cells were found positive MSC-specific surface markers CD105, CD90, and CD73 and were negative for hematopoietic cell marker CD45. Cytochemical studies revealed the ability of the cells to differentiate into osteogenic, chondrogenic, and adipogenic lineages. CONCLUSION: This simplified method of isolation and culture of bovine multipotent MSCs from the UC offcut collected after calving could be extrapolated for the greater availability of the cells for prospective therapeutic applications.