Cargando…
Assessing model mismatch and model selection in a Bayesian uncertainty quantification analysis of a fluid-dynamics model of pulmonary blood circulation
This study uses Bayesian inference to quantify the uncertainty of model parameters and haemodynamic predictions in a one-dimensional pulmonary circulation model based on an integration of mouse haemodynamic and micro-computed tomography imaging data. We emphasize an often neglected, though important...
Autores principales: | Paun, L. Mihaela, Colebank, Mitchel J., Olufsen, Mette S., Hill, Nicholas A., Husmeier, Dirk |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7811590/ https://www.ncbi.nlm.nih.gov/pubmed/33353505 http://dx.doi.org/10.1098/rsif.2020.0886 |
Ejemplares similares
-
Parameter inference in a computational model of haemodynamics in pulmonary hypertension
por: Colunga, Amanda L., et al.
Publicado: (2023) -
Markov chain Monte Carlo with Gaussian processes for fast parameter estimation and uncertainty quantification in a 1D fluid‐dynamics model of the pulmonary circulation
por: Paun, L. Mihaela, et al.
Publicado: (2020) -
Postural orthostatic tachycardia syndrome explained using a baroreflex response model
por: Geddes, Justen R., et al.
Publicado: (2022) -
Uncertainty quantification of a three-dimensional in-stent restenosis model with surrogate modelling
por: Ye, Dongwei, et al.
Publicado: (2022) -
Bayesian uncertainty quantification for transmissibility of influenza, norovirus and Ebola using information geometry
por: House, Thomas, et al.
Publicado: (2016)