Cargando…
Deep learning for intelligent diagnosis in thyroid scintigraphy
OBJECTIVE: To construct deep learning (DL) models to improve the accuracy and efficiency of thyroid disease diagnosis by thyroid scintigraphy. METHODS: We constructed DL models with AlexNet, VGGNet, and ResNet. The models were trained separately with transfer learning. We measured each model’s perfo...
Autores principales: | Qiao, Tingting, Liu, Simin, Cui, Zhijun, Yu, Xiaqing, Cai, Haidong, Zhang, Huijuan, Sun, Ming, Lv, Zhongwei, Li, Dan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7812409/ https://www.ncbi.nlm.nih.gov/pubmed/33445994 http://dx.doi.org/10.1177/0300060520982842 |
Ejemplares similares
-
Deep Learning for the Automatic Diagnosis and Analysis of Bone Metastasis on Bone Scintigrams
por: Liu, Simin, et al.
Publicado: (2022) -
CCL22 and CCL26 are potential biomarkers for predicting distant metastasis in thyroid carcinoma
por: Tong, Junyu, et al.
Publicado: (2022) -
Gut microbiota changes and its potential relations with thyroid carcinoma
por: Yu, Xiaqing, et al.
Publicado: (2021) -
The HOTAIRM1/miR-107/TDG axis regulates papillary thyroid cancer cell proliferation and invasion
por: Li, Dan, et al.
Publicado: (2020) -
Somatostatin receptor scintigraphy in the follow up of neuroendocrine neoplasms of appendix
por: Saponjski, Jelena, et al.
Publicado: (2020)