Cargando…
Approximating anatomically-guided PET reconstruction in image space using a convolutional neural network
In the last two decades, it has been shown that anatomically-guided PET reconstruction can lead to improved bias-noise characteristics in brain PET imaging. However, despite promising results in simulations and first studies, anatomically-guided PET reconstructions are not yet available for use in r...
Autores principales: | Schramm, Georg, Rigie, David, Vahle, Thomas, Rezaei, Ahmadreza, Van Laere, Koen, Shepherd, Timothy, Nuyts, Johan, Boada, Fernando |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7812485/ https://www.ncbi.nlm.nih.gov/pubmed/32971267 http://dx.doi.org/10.1016/j.neuroimage.2020.117399 |
Ejemplares similares
-
PET motion correction using MR-derived motion parameters
por: Bickell, Matthew, et al.
Publicado: (2014) -
Long-term Ashtanga yoga practice decreases medial temporal and brainstem glucose metabolism in relation to years of experience
por: van Aalst, June, et al.
Publicado: (2020) -
Convolutional-recurrent neural networks approximate diffusion tractography from T1-weighted MRI and associated anatomical context
por: Cai, Leon Y., et al.
Publicado: (2023) -
PET/MR: improvement of the UTE μ-maps using modified MLAA
por: Benoit, Didier, et al.
Publicado: (2015) -
Optoacoustic inversion via convolution kernel reconstruction in the paraxial approximation and beyond
por: Melchert, O., et al.
Publicado: (2018)