Cargando…
Interactional synchrony: signals, mechanisms and benefits
Many group-living animals, humans included, occasionally synchronize their behavior with that of conspecifics. Social psychology and neuroscience have attempted to explain this phenomenon. Here we sought to integrate results around three themes: the stimuli, the mechanisms and the benefits of intera...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7812629/ https://www.ncbi.nlm.nih.gov/pubmed/32128587 http://dx.doi.org/10.1093/scan/nsaa024 |
Sumario: | Many group-living animals, humans included, occasionally synchronize their behavior with that of conspecifics. Social psychology and neuroscience have attempted to explain this phenomenon. Here we sought to integrate results around three themes: the stimuli, the mechanisms and the benefits of interactional synchrony. As regards stimuli, we asked what characteristics, apart from temporal regularity, prompt synchronization and found that stimulus modality and complexity are important. The high temporal resolution of the auditory system and the relevance of socio-emotional information endow auditory, multimodal, emotional and somewhat variable and adaptive sequences with particular synchronizing power. Looking at the mechanisms revealed that traditional perspectives emphasizing beat-based representations of others’ signals conflict with more recent work investigating the perception of temporal regularity. Timing processes supported by striato-cortical loops represent any kind of repetitive interval sequence fairly automatically. Additionally, socio-emotional processes supported by posterior superior temporal cortex help endow such sequences with value motivating the extent of synchronizing. Synchronizing benefits arise from an increased predictability of incoming signals and include many positive outcomes ranging from basic information processing at the individual level to the bonding of dyads and larger groups. |
---|