Cargando…
A CRISPR-Cas9–engineered mouse model for GPI-anchor deficiency mirrors human phenotypes and exhibits hippocampal synaptic dysfunctions
Pathogenic germline mutations in PIGV lead to glycosylphosphatidylinositol biosynthesis deficiency (GPIBD). Individuals with pathogenic biallelic mutations in genes of the glycosylphosphatidylinositol (GPI)-anchor pathway exhibit cognitive impairments, motor delay, and often epilepsy. Thus far, the...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7812744/ https://www.ncbi.nlm.nih.gov/pubmed/33402532 http://dx.doi.org/10.1073/pnas.2014481118 |
_version_ | 1783637729142112256 |
---|---|
author | Rodríguez de los Santos, Miguel Rivalan, Marion David, Friederike S. Stumpf, Alexander Pitsch, Julika Tsortouktzidis, Despina Velasquez, Laura Moreno Voigt, Anne Schilling, Karl Mattei, Daniele Long, Melissa Vogt, Guido Knaus, Alexej Fischer-Zirnsak, Björn Wittler, Lars Timmermann, Bernd Robinson, Peter N. Horn, Denise Mundlos, Stefan Kornak, Uwe Becker, Albert J. Schmitz, Dietmar Winter, York Krawitz, Peter M. |
author_facet | Rodríguez de los Santos, Miguel Rivalan, Marion David, Friederike S. Stumpf, Alexander Pitsch, Julika Tsortouktzidis, Despina Velasquez, Laura Moreno Voigt, Anne Schilling, Karl Mattei, Daniele Long, Melissa Vogt, Guido Knaus, Alexej Fischer-Zirnsak, Björn Wittler, Lars Timmermann, Bernd Robinson, Peter N. Horn, Denise Mundlos, Stefan Kornak, Uwe Becker, Albert J. Schmitz, Dietmar Winter, York Krawitz, Peter M. |
author_sort | Rodríguez de los Santos, Miguel |
collection | PubMed |
description | Pathogenic germline mutations in PIGV lead to glycosylphosphatidylinositol biosynthesis deficiency (GPIBD). Individuals with pathogenic biallelic mutations in genes of the glycosylphosphatidylinositol (GPI)-anchor pathway exhibit cognitive impairments, motor delay, and often epilepsy. Thus far, the pathophysiology underlying the disease remains unclear, and suitable rodent models that mirror all symptoms observed in human patients have not been available. Therefore, we used CRISPR-Cas9 to introduce the most prevalent hypomorphic missense mutation in European patients, Pigv:c.1022C > A (p.A341E), at a site that is conserved in mice. Mirroring the human pathology, mutant Pigv(341E) mice exhibited deficits in motor coordination, cognitive impairments, and alterations in sociability and sleep patterns, as well as increased seizure susceptibility. Furthermore, immunohistochemistry revealed reduced synaptophysin immunoreactivity in Pigv(341E) mice, and electrophysiology recordings showed decreased hippocampal synaptic transmission that could underlie impaired memory formation. In single-cell RNA sequencing, Pigv(341E)-hippocampal cells exhibited changes in gene expression, most prominently in a subtype of microglia and subicular neurons. A significant reduction in Abl1 transcript levels in several cell clusters suggested a link to the signaling pathway of GPI-anchored ephrins. We also observed elevated levels of Hdc transcripts, which might affect histamine metabolism with consequences for circadian rhythm. This mouse model will not only open the doors to further investigation into the pathophysiology of GPIBD, but will also deepen our understanding of the role of GPI-anchor–related pathways in brain development. |
format | Online Article Text |
id | pubmed-7812744 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-78127442021-01-28 A CRISPR-Cas9–engineered mouse model for GPI-anchor deficiency mirrors human phenotypes and exhibits hippocampal synaptic dysfunctions Rodríguez de los Santos, Miguel Rivalan, Marion David, Friederike S. Stumpf, Alexander Pitsch, Julika Tsortouktzidis, Despina Velasquez, Laura Moreno Voigt, Anne Schilling, Karl Mattei, Daniele Long, Melissa Vogt, Guido Knaus, Alexej Fischer-Zirnsak, Björn Wittler, Lars Timmermann, Bernd Robinson, Peter N. Horn, Denise Mundlos, Stefan Kornak, Uwe Becker, Albert J. Schmitz, Dietmar Winter, York Krawitz, Peter M. Proc Natl Acad Sci U S A Biological Sciences Pathogenic germline mutations in PIGV lead to glycosylphosphatidylinositol biosynthesis deficiency (GPIBD). Individuals with pathogenic biallelic mutations in genes of the glycosylphosphatidylinositol (GPI)-anchor pathway exhibit cognitive impairments, motor delay, and often epilepsy. Thus far, the pathophysiology underlying the disease remains unclear, and suitable rodent models that mirror all symptoms observed in human patients have not been available. Therefore, we used CRISPR-Cas9 to introduce the most prevalent hypomorphic missense mutation in European patients, Pigv:c.1022C > A (p.A341E), at a site that is conserved in mice. Mirroring the human pathology, mutant Pigv(341E) mice exhibited deficits in motor coordination, cognitive impairments, and alterations in sociability and sleep patterns, as well as increased seizure susceptibility. Furthermore, immunohistochemistry revealed reduced synaptophysin immunoreactivity in Pigv(341E) mice, and electrophysiology recordings showed decreased hippocampal synaptic transmission that could underlie impaired memory formation. In single-cell RNA sequencing, Pigv(341E)-hippocampal cells exhibited changes in gene expression, most prominently in a subtype of microglia and subicular neurons. A significant reduction in Abl1 transcript levels in several cell clusters suggested a link to the signaling pathway of GPI-anchored ephrins. We also observed elevated levels of Hdc transcripts, which might affect histamine metabolism with consequences for circadian rhythm. This mouse model will not only open the doors to further investigation into the pathophysiology of GPIBD, but will also deepen our understanding of the role of GPI-anchor–related pathways in brain development. National Academy of Sciences 2021-01-12 2021-01-05 /pmc/articles/PMC7812744/ /pubmed/33402532 http://dx.doi.org/10.1073/pnas.2014481118 Text en Copyright © 2020 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/ https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Biological Sciences Rodríguez de los Santos, Miguel Rivalan, Marion David, Friederike S. Stumpf, Alexander Pitsch, Julika Tsortouktzidis, Despina Velasquez, Laura Moreno Voigt, Anne Schilling, Karl Mattei, Daniele Long, Melissa Vogt, Guido Knaus, Alexej Fischer-Zirnsak, Björn Wittler, Lars Timmermann, Bernd Robinson, Peter N. Horn, Denise Mundlos, Stefan Kornak, Uwe Becker, Albert J. Schmitz, Dietmar Winter, York Krawitz, Peter M. A CRISPR-Cas9–engineered mouse model for GPI-anchor deficiency mirrors human phenotypes and exhibits hippocampal synaptic dysfunctions |
title | A CRISPR-Cas9–engineered mouse model for GPI-anchor deficiency mirrors human phenotypes and exhibits hippocampal synaptic dysfunctions |
title_full | A CRISPR-Cas9–engineered mouse model for GPI-anchor deficiency mirrors human phenotypes and exhibits hippocampal synaptic dysfunctions |
title_fullStr | A CRISPR-Cas9–engineered mouse model for GPI-anchor deficiency mirrors human phenotypes and exhibits hippocampal synaptic dysfunctions |
title_full_unstemmed | A CRISPR-Cas9–engineered mouse model for GPI-anchor deficiency mirrors human phenotypes and exhibits hippocampal synaptic dysfunctions |
title_short | A CRISPR-Cas9–engineered mouse model for GPI-anchor deficiency mirrors human phenotypes and exhibits hippocampal synaptic dysfunctions |
title_sort | crispr-cas9–engineered mouse model for gpi-anchor deficiency mirrors human phenotypes and exhibits hippocampal synaptic dysfunctions |
topic | Biological Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7812744/ https://www.ncbi.nlm.nih.gov/pubmed/33402532 http://dx.doi.org/10.1073/pnas.2014481118 |
work_keys_str_mv | AT rodriguezdelossantosmiguel acrisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions AT rivalanmarion acrisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions AT davidfriederikes acrisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions AT stumpfalexander acrisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions AT pitschjulika acrisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions AT tsortouktzidisdespina acrisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions AT velasquezlauramoreno acrisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions AT voigtanne acrisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions AT schillingkarl acrisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions AT matteidaniele acrisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions AT longmelissa acrisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions AT vogtguido acrisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions AT knausalexej acrisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions AT fischerzirnsakbjorn acrisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions AT wittlerlars acrisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions AT timmermannbernd acrisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions AT robinsonpetern acrisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions AT horndenise acrisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions AT mundlosstefan acrisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions AT kornakuwe acrisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions AT beckeralbertj acrisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions AT schmitzdietmar acrisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions AT winteryork acrisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions AT krawitzpeterm acrisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions AT rodriguezdelossantosmiguel crisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions AT rivalanmarion crisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions AT davidfriederikes crisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions AT stumpfalexander crisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions AT pitschjulika crisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions AT tsortouktzidisdespina crisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions AT velasquezlauramoreno crisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions AT voigtanne crisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions AT schillingkarl crisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions AT matteidaniele crisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions AT longmelissa crisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions AT vogtguido crisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions AT knausalexej crisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions AT fischerzirnsakbjorn crisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions AT wittlerlars crisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions AT timmermannbernd crisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions AT robinsonpetern crisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions AT horndenise crisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions AT mundlosstefan crisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions AT kornakuwe crisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions AT beckeralbertj crisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions AT schmitzdietmar crisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions AT winteryork crisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions AT krawitzpeterm crisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions |