Cargando…

A CRISPR-Cas9–engineered mouse model for GPI-anchor deficiency mirrors human phenotypes and exhibits hippocampal synaptic dysfunctions

Pathogenic germline mutations in PIGV lead to glycosylphosphatidylinositol biosynthesis deficiency (GPIBD). Individuals with pathogenic biallelic mutations in genes of the glycosylphosphatidylinositol (GPI)-anchor pathway exhibit cognitive impairments, motor delay, and often epilepsy. Thus far, the...

Descripción completa

Detalles Bibliográficos
Autores principales: Rodríguez de los Santos, Miguel, Rivalan, Marion, David, Friederike S., Stumpf, Alexander, Pitsch, Julika, Tsortouktzidis, Despina, Velasquez, Laura Moreno, Voigt, Anne, Schilling, Karl, Mattei, Daniele, Long, Melissa, Vogt, Guido, Knaus, Alexej, Fischer-Zirnsak, Björn, Wittler, Lars, Timmermann, Bernd, Robinson, Peter N., Horn, Denise, Mundlos, Stefan, Kornak, Uwe, Becker, Albert J., Schmitz, Dietmar, Winter, York, Krawitz, Peter M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7812744/
https://www.ncbi.nlm.nih.gov/pubmed/33402532
http://dx.doi.org/10.1073/pnas.2014481118
_version_ 1783637729142112256
author Rodríguez de los Santos, Miguel
Rivalan, Marion
David, Friederike S.
Stumpf, Alexander
Pitsch, Julika
Tsortouktzidis, Despina
Velasquez, Laura Moreno
Voigt, Anne
Schilling, Karl
Mattei, Daniele
Long, Melissa
Vogt, Guido
Knaus, Alexej
Fischer-Zirnsak, Björn
Wittler, Lars
Timmermann, Bernd
Robinson, Peter N.
Horn, Denise
Mundlos, Stefan
Kornak, Uwe
Becker, Albert J.
Schmitz, Dietmar
Winter, York
Krawitz, Peter M.
author_facet Rodríguez de los Santos, Miguel
Rivalan, Marion
David, Friederike S.
Stumpf, Alexander
Pitsch, Julika
Tsortouktzidis, Despina
Velasquez, Laura Moreno
Voigt, Anne
Schilling, Karl
Mattei, Daniele
Long, Melissa
Vogt, Guido
Knaus, Alexej
Fischer-Zirnsak, Björn
Wittler, Lars
Timmermann, Bernd
Robinson, Peter N.
Horn, Denise
Mundlos, Stefan
Kornak, Uwe
Becker, Albert J.
Schmitz, Dietmar
Winter, York
Krawitz, Peter M.
author_sort Rodríguez de los Santos, Miguel
collection PubMed
description Pathogenic germline mutations in PIGV lead to glycosylphosphatidylinositol biosynthesis deficiency (GPIBD). Individuals with pathogenic biallelic mutations in genes of the glycosylphosphatidylinositol (GPI)-anchor pathway exhibit cognitive impairments, motor delay, and often epilepsy. Thus far, the pathophysiology underlying the disease remains unclear, and suitable rodent models that mirror all symptoms observed in human patients have not been available. Therefore, we used CRISPR-Cas9 to introduce the most prevalent hypomorphic missense mutation in European patients, Pigv:c.1022C > A (p.A341E), at a site that is conserved in mice. Mirroring the human pathology, mutant Pigv(341E) mice exhibited deficits in motor coordination, cognitive impairments, and alterations in sociability and sleep patterns, as well as increased seizure susceptibility. Furthermore, immunohistochemistry revealed reduced synaptophysin immunoreactivity in Pigv(341E) mice, and electrophysiology recordings showed decreased hippocampal synaptic transmission that could underlie impaired memory formation. In single-cell RNA sequencing, Pigv(341E)-hippocampal cells exhibited changes in gene expression, most prominently in a subtype of microglia and subicular neurons. A significant reduction in Abl1 transcript levels in several cell clusters suggested a link to the signaling pathway of GPI-anchored ephrins. We also observed elevated levels of Hdc transcripts, which might affect histamine metabolism with consequences for circadian rhythm. This mouse model will not only open the doors to further investigation into the pathophysiology of GPIBD, but will also deepen our understanding of the role of GPI-anchor–related pathways in brain development.
format Online
Article
Text
id pubmed-7812744
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-78127442021-01-28 A CRISPR-Cas9–engineered mouse model for GPI-anchor deficiency mirrors human phenotypes and exhibits hippocampal synaptic dysfunctions Rodríguez de los Santos, Miguel Rivalan, Marion David, Friederike S. Stumpf, Alexander Pitsch, Julika Tsortouktzidis, Despina Velasquez, Laura Moreno Voigt, Anne Schilling, Karl Mattei, Daniele Long, Melissa Vogt, Guido Knaus, Alexej Fischer-Zirnsak, Björn Wittler, Lars Timmermann, Bernd Robinson, Peter N. Horn, Denise Mundlos, Stefan Kornak, Uwe Becker, Albert J. Schmitz, Dietmar Winter, York Krawitz, Peter M. Proc Natl Acad Sci U S A Biological Sciences Pathogenic germline mutations in PIGV lead to glycosylphosphatidylinositol biosynthesis deficiency (GPIBD). Individuals with pathogenic biallelic mutations in genes of the glycosylphosphatidylinositol (GPI)-anchor pathway exhibit cognitive impairments, motor delay, and often epilepsy. Thus far, the pathophysiology underlying the disease remains unclear, and suitable rodent models that mirror all symptoms observed in human patients have not been available. Therefore, we used CRISPR-Cas9 to introduce the most prevalent hypomorphic missense mutation in European patients, Pigv:c.1022C > A (p.A341E), at a site that is conserved in mice. Mirroring the human pathology, mutant Pigv(341E) mice exhibited deficits in motor coordination, cognitive impairments, and alterations in sociability and sleep patterns, as well as increased seizure susceptibility. Furthermore, immunohistochemistry revealed reduced synaptophysin immunoreactivity in Pigv(341E) mice, and electrophysiology recordings showed decreased hippocampal synaptic transmission that could underlie impaired memory formation. In single-cell RNA sequencing, Pigv(341E)-hippocampal cells exhibited changes in gene expression, most prominently in a subtype of microglia and subicular neurons. A significant reduction in Abl1 transcript levels in several cell clusters suggested a link to the signaling pathway of GPI-anchored ephrins. We also observed elevated levels of Hdc transcripts, which might affect histamine metabolism with consequences for circadian rhythm. This mouse model will not only open the doors to further investigation into the pathophysiology of GPIBD, but will also deepen our understanding of the role of GPI-anchor–related pathways in brain development. National Academy of Sciences 2021-01-12 2021-01-05 /pmc/articles/PMC7812744/ /pubmed/33402532 http://dx.doi.org/10.1073/pnas.2014481118 Text en Copyright © 2020 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/ https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Biological Sciences
Rodríguez de los Santos, Miguel
Rivalan, Marion
David, Friederike S.
Stumpf, Alexander
Pitsch, Julika
Tsortouktzidis, Despina
Velasquez, Laura Moreno
Voigt, Anne
Schilling, Karl
Mattei, Daniele
Long, Melissa
Vogt, Guido
Knaus, Alexej
Fischer-Zirnsak, Björn
Wittler, Lars
Timmermann, Bernd
Robinson, Peter N.
Horn, Denise
Mundlos, Stefan
Kornak, Uwe
Becker, Albert J.
Schmitz, Dietmar
Winter, York
Krawitz, Peter M.
A CRISPR-Cas9–engineered mouse model for GPI-anchor deficiency mirrors human phenotypes and exhibits hippocampal synaptic dysfunctions
title A CRISPR-Cas9–engineered mouse model for GPI-anchor deficiency mirrors human phenotypes and exhibits hippocampal synaptic dysfunctions
title_full A CRISPR-Cas9–engineered mouse model for GPI-anchor deficiency mirrors human phenotypes and exhibits hippocampal synaptic dysfunctions
title_fullStr A CRISPR-Cas9–engineered mouse model for GPI-anchor deficiency mirrors human phenotypes and exhibits hippocampal synaptic dysfunctions
title_full_unstemmed A CRISPR-Cas9–engineered mouse model for GPI-anchor deficiency mirrors human phenotypes and exhibits hippocampal synaptic dysfunctions
title_short A CRISPR-Cas9–engineered mouse model for GPI-anchor deficiency mirrors human phenotypes and exhibits hippocampal synaptic dysfunctions
title_sort crispr-cas9–engineered mouse model for gpi-anchor deficiency mirrors human phenotypes and exhibits hippocampal synaptic dysfunctions
topic Biological Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7812744/
https://www.ncbi.nlm.nih.gov/pubmed/33402532
http://dx.doi.org/10.1073/pnas.2014481118
work_keys_str_mv AT rodriguezdelossantosmiguel acrisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions
AT rivalanmarion acrisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions
AT davidfriederikes acrisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions
AT stumpfalexander acrisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions
AT pitschjulika acrisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions
AT tsortouktzidisdespina acrisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions
AT velasquezlauramoreno acrisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions
AT voigtanne acrisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions
AT schillingkarl acrisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions
AT matteidaniele acrisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions
AT longmelissa acrisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions
AT vogtguido acrisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions
AT knausalexej acrisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions
AT fischerzirnsakbjorn acrisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions
AT wittlerlars acrisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions
AT timmermannbernd acrisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions
AT robinsonpetern acrisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions
AT horndenise acrisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions
AT mundlosstefan acrisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions
AT kornakuwe acrisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions
AT beckeralbertj acrisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions
AT schmitzdietmar acrisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions
AT winteryork acrisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions
AT krawitzpeterm acrisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions
AT rodriguezdelossantosmiguel crisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions
AT rivalanmarion crisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions
AT davidfriederikes crisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions
AT stumpfalexander crisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions
AT pitschjulika crisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions
AT tsortouktzidisdespina crisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions
AT velasquezlauramoreno crisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions
AT voigtanne crisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions
AT schillingkarl crisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions
AT matteidaniele crisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions
AT longmelissa crisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions
AT vogtguido crisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions
AT knausalexej crisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions
AT fischerzirnsakbjorn crisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions
AT wittlerlars crisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions
AT timmermannbernd crisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions
AT robinsonpetern crisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions
AT horndenise crisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions
AT mundlosstefan crisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions
AT kornakuwe crisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions
AT beckeralbertj crisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions
AT schmitzdietmar crisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions
AT winteryork crisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions
AT krawitzpeterm crisprcas9engineeredmousemodelforgpianchordeficiencymirrorshumanphenotypesandexhibitshippocampalsynapticdysfunctions