Cargando…

An Arf/Rab cascade controls the growth and invasiveness of glioblastoma

Glioblastoma is the most common and deadly malignant brain cancer. We now demonstrate that loss of function of the endosomal GTPase Rab35 in human brain tumor initiating cells (BTICs) increases glioblastoma growth and decreases animal survival following BTIC implantation in mouse brains. Mechanistic...

Descripción completa

Detalles Bibliográficos
Autores principales: Kulasekaran, Gopinath, Chaineau, Mathilde, Piscopo, Valerio Emilio Crescenzo, Verginelli, Federica, Fotouhi, Maryam, Girard, Martine, Tang, Yeman, Dali, Rola, Lo, Rita, Stifani, Stefano, McPherson, Peter S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Rockefeller University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7812876/
https://www.ncbi.nlm.nih.gov/pubmed/33443570
http://dx.doi.org/10.1083/jcb.202004229
Descripción
Sumario:Glioblastoma is the most common and deadly malignant brain cancer. We now demonstrate that loss of function of the endosomal GTPase Rab35 in human brain tumor initiating cells (BTICs) increases glioblastoma growth and decreases animal survival following BTIC implantation in mouse brains. Mechanistically, we identify that the GTPase Arf5 interacts with the guanine nucleotide exchange factor (GEF) for Rab35, DENND1/connecdenn, and allosterically enhances its GEF activity toward Rab35. Knockdown of either Rab35 or Arf5 increases cell migration, invasiveness, and self-renewal in culture and enhances the growth and invasiveness of BTIC-initiated brain tumors in mice. RNAseq of the tumors reveals up-regulation of the tumor-promoting transcription factor SPOCD1, and disruption of the Arf5/Rab35 axis in glioblastoma cells leads to strong activation of the epidermal growth factor receptor, with resulting enhancement of SPOCD1 levels. These discoveries reveal an unexpected cascade between an Arf and a Rab and indicate a role for the cascade, and thus endosomal trafficking, in brain tumors.