Cargando…
Nowcasting for Real-Time COVID-19 Tracking in New York City: An Evaluation Using Reportable Disease Data From Early in the Pandemic
BACKGROUND: Nowcasting approaches enhance the utility of reportable disease data for trend monitoring by correcting for delays, but implementation details affect accuracy. OBJECTIVE: To support real-time COVID-19 situational awareness, the New York City Department of Health and Mental Hygiene used n...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7812916/ https://www.ncbi.nlm.nih.gov/pubmed/33406053 http://dx.doi.org/10.2196/25538 |
_version_ | 1783637750060154880 |
---|---|
author | Greene, Sharon K McGough, Sarah F Culp, Gretchen M Graf, Laura E Lipsitch, Marc Menzies, Nicolas A Kahn, Rebecca |
author_facet | Greene, Sharon K McGough, Sarah F Culp, Gretchen M Graf, Laura E Lipsitch, Marc Menzies, Nicolas A Kahn, Rebecca |
author_sort | Greene, Sharon K |
collection | PubMed |
description | BACKGROUND: Nowcasting approaches enhance the utility of reportable disease data for trend monitoring by correcting for delays, but implementation details affect accuracy. OBJECTIVE: To support real-time COVID-19 situational awareness, the New York City Department of Health and Mental Hygiene used nowcasting to account for testing and reporting delays. We conducted an evaluation to determine which implementation details would yield the most accurate estimated case counts. METHODS: A time-correlated Bayesian approach called Nowcasting by Bayesian Smoothing (NobBS) was applied in real time to line lists of reportable disease surveillance data, accounting for the delay from diagnosis to reporting and the shape of the epidemic curve. We retrospectively evaluated nowcasting performance for confirmed case counts among residents diagnosed during the period from March to May 2020, a period when the median reporting delay was 2 days. RESULTS: Nowcasts with a 2-week moving window and a negative binomial distribution had lower mean absolute error, lower relative root mean square error, and higher 95% prediction interval coverage than nowcasts conducted with a 3-week moving window or with a Poisson distribution. Nowcasts conducted toward the end of the week outperformed nowcasts performed earlier in the week, given fewer patients diagnosed on weekends and lack of day-of-week adjustments. When estimating case counts for weekdays only, metrics were similar across days when the nowcasts were conducted, with Mondays having the lowest mean absolute error of 183 cases in the context of an average daily weekday case count of 2914. CONCLUSIONS: Nowcasting using NobBS can effectively support COVID-19 trend monitoring. Accounting for overdispersion, shortening the moving window, and suppressing diagnoses on weekends—when fewer patients submitted specimens for testing—improved the accuracy of estimated case counts. Nowcasting ensured that recent decreases in observed case counts were not overinterpreted as true declines and supported officials in anticipating the magnitude and timing of hospitalizations and deaths and allocating resources geographically. |
format | Online Article Text |
id | pubmed-7812916 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | JMIR Publications |
record_format | MEDLINE/PubMed |
spelling | pubmed-78129162021-01-22 Nowcasting for Real-Time COVID-19 Tracking in New York City: An Evaluation Using Reportable Disease Data From Early in the Pandemic Greene, Sharon K McGough, Sarah F Culp, Gretchen M Graf, Laura E Lipsitch, Marc Menzies, Nicolas A Kahn, Rebecca JMIR Public Health Surveill Original Paper BACKGROUND: Nowcasting approaches enhance the utility of reportable disease data for trend monitoring by correcting for delays, but implementation details affect accuracy. OBJECTIVE: To support real-time COVID-19 situational awareness, the New York City Department of Health and Mental Hygiene used nowcasting to account for testing and reporting delays. We conducted an evaluation to determine which implementation details would yield the most accurate estimated case counts. METHODS: A time-correlated Bayesian approach called Nowcasting by Bayesian Smoothing (NobBS) was applied in real time to line lists of reportable disease surveillance data, accounting for the delay from diagnosis to reporting and the shape of the epidemic curve. We retrospectively evaluated nowcasting performance for confirmed case counts among residents diagnosed during the period from March to May 2020, a period when the median reporting delay was 2 days. RESULTS: Nowcasts with a 2-week moving window and a negative binomial distribution had lower mean absolute error, lower relative root mean square error, and higher 95% prediction interval coverage than nowcasts conducted with a 3-week moving window or with a Poisson distribution. Nowcasts conducted toward the end of the week outperformed nowcasts performed earlier in the week, given fewer patients diagnosed on weekends and lack of day-of-week adjustments. When estimating case counts for weekdays only, metrics were similar across days when the nowcasts were conducted, with Mondays having the lowest mean absolute error of 183 cases in the context of an average daily weekday case count of 2914. CONCLUSIONS: Nowcasting using NobBS can effectively support COVID-19 trend monitoring. Accounting for overdispersion, shortening the moving window, and suppressing diagnoses on weekends—when fewer patients submitted specimens for testing—improved the accuracy of estimated case counts. Nowcasting ensured that recent decreases in observed case counts were not overinterpreted as true declines and supported officials in anticipating the magnitude and timing of hospitalizations and deaths and allocating resources geographically. JMIR Publications 2021-01-15 /pmc/articles/PMC7812916/ /pubmed/33406053 http://dx.doi.org/10.2196/25538 Text en ©Sharon K Greene, Sarah F McGough, Gretchen M Culp, Laura E Graf, Marc Lipsitch, Nicolas A Menzies, Rebecca Kahn. Originally published in JMIR Public Health and Surveillance (http://publichealth.jmir.org), 15.01.2021. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR Public Health and Surveillance, is properly cited. The complete bibliographic information, a link to the original publication on http://publichealth.jmir.org, as well as this copyright and license information must be included. |
spellingShingle | Original Paper Greene, Sharon K McGough, Sarah F Culp, Gretchen M Graf, Laura E Lipsitch, Marc Menzies, Nicolas A Kahn, Rebecca Nowcasting for Real-Time COVID-19 Tracking in New York City: An Evaluation Using Reportable Disease Data From Early in the Pandemic |
title | Nowcasting for Real-Time COVID-19 Tracking in New York City: An Evaluation Using Reportable Disease Data From Early in the Pandemic |
title_full | Nowcasting for Real-Time COVID-19 Tracking in New York City: An Evaluation Using Reportable Disease Data From Early in the Pandemic |
title_fullStr | Nowcasting for Real-Time COVID-19 Tracking in New York City: An Evaluation Using Reportable Disease Data From Early in the Pandemic |
title_full_unstemmed | Nowcasting for Real-Time COVID-19 Tracking in New York City: An Evaluation Using Reportable Disease Data From Early in the Pandemic |
title_short | Nowcasting for Real-Time COVID-19 Tracking in New York City: An Evaluation Using Reportable Disease Data From Early in the Pandemic |
title_sort | nowcasting for real-time covid-19 tracking in new york city: an evaluation using reportable disease data from early in the pandemic |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7812916/ https://www.ncbi.nlm.nih.gov/pubmed/33406053 http://dx.doi.org/10.2196/25538 |
work_keys_str_mv | AT greenesharonk nowcastingforrealtimecovid19trackinginnewyorkcityanevaluationusingreportablediseasedatafromearlyinthepandemic AT mcgoughsarahf nowcastingforrealtimecovid19trackinginnewyorkcityanevaluationusingreportablediseasedatafromearlyinthepandemic AT culpgretchenm nowcastingforrealtimecovid19trackinginnewyorkcityanevaluationusingreportablediseasedatafromearlyinthepandemic AT graflaurae nowcastingforrealtimecovid19trackinginnewyorkcityanevaluationusingreportablediseasedatafromearlyinthepandemic AT lipsitchmarc nowcastingforrealtimecovid19trackinginnewyorkcityanevaluationusingreportablediseasedatafromearlyinthepandemic AT menziesnicolasa nowcastingforrealtimecovid19trackinginnewyorkcityanevaluationusingreportablediseasedatafromearlyinthepandemic AT kahnrebecca nowcastingforrealtimecovid19trackinginnewyorkcityanevaluationusingreportablediseasedatafromearlyinthepandemic |