Cargando…
Three-dimensional segmentation of computed tomography data using Drishti Paint: new tools and developments
Computed tomography (CT) has become very widely used in scientific and medical research and industry for its non-destructive and high-resolution means of detecting internal structure. Three-dimensional segmentation of computed tomography data sheds light on internal features of target objects. Three...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7813226/ https://www.ncbi.nlm.nih.gov/pubmed/33489265 http://dx.doi.org/10.1098/rsos.201033 |
Sumario: | Computed tomography (CT) has become very widely used in scientific and medical research and industry for its non-destructive and high-resolution means of detecting internal structure. Three-dimensional segmentation of computed tomography data sheds light on internal features of target objects. Three-dimensional segmentation of CT data is supported by various well-established software programs, but the powerful functionalities and capabilities of open-source software have not been fully revealed. Here, we present a new release of the open-source volume exploration, rendering and three-dimensional segmentation software, Drishti v. 2.7. We introduce a new tool for thresholding volume data (i.e. gradient thresholding) and a protocol for performing three-dimensional segmentation using the 3D Freeform Painter tool. These new tools and workflow enable more accurate and precise digital reconstruction, three-dimensional modelling and three-dimensional printing results. We use scan data of a fossil fish as a case study, but our procedure is widely applicable in biological, medical and industrial research. |
---|