Cargando…

Hydrogen deuterium exchange mass spectrometry identifies the dominant paratope in CD20 antigen binding to the NCD1.2 monoclonal antibody

A comparative canine–human therapeutics model is being developed in B-cell lymphoma through the generation of a hybridoma cell that produces a murine monoclonal antibody specific for canine CD20. The hybridoma cell produces two light chains, light chain-3, and light chain-7. However, the contributio...

Descripción completa

Detalles Bibliográficos
Autores principales: Uhrik, Lukas, Hernychova, Lenka, Muller, Petr, Kalathiya, Umesh, Lisowska, Malgorzata M., Kocikowski, Mikolaj, Parys, Maciej, Faktor, Jakub, Nekulova, Marta, Nortcliffe, Chris, Zatloukalova, Pavlina, Ruetgen, Barbara, Fahraeus, Robin, Ball, Kathryn L., Argyle, David J., Vojtesek, Borivoj, Hupp, Ted R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Portland Press Ltd. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7813475/
https://www.ncbi.nlm.nih.gov/pubmed/33284343
http://dx.doi.org/10.1042/BCJ20200674
_version_ 1783637856142491648
author Uhrik, Lukas
Hernychova, Lenka
Muller, Petr
Kalathiya, Umesh
Lisowska, Malgorzata M.
Kocikowski, Mikolaj
Parys, Maciej
Faktor, Jakub
Nekulova, Marta
Nortcliffe, Chris
Zatloukalova, Pavlina
Ruetgen, Barbara
Fahraeus, Robin
Ball, Kathryn L.
Argyle, David J.
Vojtesek, Borivoj
Hupp, Ted R.
author_facet Uhrik, Lukas
Hernychova, Lenka
Muller, Petr
Kalathiya, Umesh
Lisowska, Malgorzata M.
Kocikowski, Mikolaj
Parys, Maciej
Faktor, Jakub
Nekulova, Marta
Nortcliffe, Chris
Zatloukalova, Pavlina
Ruetgen, Barbara
Fahraeus, Robin
Ball, Kathryn L.
Argyle, David J.
Vojtesek, Borivoj
Hupp, Ted R.
author_sort Uhrik, Lukas
collection PubMed
description A comparative canine–human therapeutics model is being developed in B-cell lymphoma through the generation of a hybridoma cell that produces a murine monoclonal antibody specific for canine CD20. The hybridoma cell produces two light chains, light chain-3, and light chain-7. However, the contribution of either light chain to the authentic full-length hybridoma derived IgG is undefined. Mass spectrometry was used to identify only one of the two light chains, light chain-7, as predominating in the full-length IgG. Gene synthesis created a recombinant murine–canine chimeric monoclonal antibody expressing light chain-7 that reconstituted the IgG binding to CD20. Using light chain-7 as a reference sequence, hydrogen deuterium exchange mass spectrometry was used to identify the dominant CDR region implicated in CD20 antigen binding. Early in the deuteration reaction, the CD20 antigen suppressed deuteration at CDR3 (V(H)). In later time points, deuterium suppression occurred at CDR2 (V(H)) and CDR2 (V(L)), with the maintenance of the CDR3 (V(H)) interaction. These data suggest that CDR3 (V(H)) functions as the dominant antigen docking motif and that antibody aggregation is induced at later time points after antigen binding. These approaches define a methodology for fine mapping of CDR contacts using nested enzymatic reactions and hydrogen deuterium exchange mass spectrometry. These data support the further development of an engineered, synthetic canine–murine monoclonal antibody, focused on CDR3 (V(H)), for use as a canine lymphoma therapeutic that mimics the human–murine chimeric anti-CD20 antibody Rituximab.
format Online
Article
Text
id pubmed-7813475
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Portland Press Ltd.
record_format MEDLINE/PubMed
spelling pubmed-78134752021-01-28 Hydrogen deuterium exchange mass spectrometry identifies the dominant paratope in CD20 antigen binding to the NCD1.2 monoclonal antibody Uhrik, Lukas Hernychova, Lenka Muller, Petr Kalathiya, Umesh Lisowska, Malgorzata M. Kocikowski, Mikolaj Parys, Maciej Faktor, Jakub Nekulova, Marta Nortcliffe, Chris Zatloukalova, Pavlina Ruetgen, Barbara Fahraeus, Robin Ball, Kathryn L. Argyle, David J. Vojtesek, Borivoj Hupp, Ted R. Biochem J Cancer A comparative canine–human therapeutics model is being developed in B-cell lymphoma through the generation of a hybridoma cell that produces a murine monoclonal antibody specific for canine CD20. The hybridoma cell produces two light chains, light chain-3, and light chain-7. However, the contribution of either light chain to the authentic full-length hybridoma derived IgG is undefined. Mass spectrometry was used to identify only one of the two light chains, light chain-7, as predominating in the full-length IgG. Gene synthesis created a recombinant murine–canine chimeric monoclonal antibody expressing light chain-7 that reconstituted the IgG binding to CD20. Using light chain-7 as a reference sequence, hydrogen deuterium exchange mass spectrometry was used to identify the dominant CDR region implicated in CD20 antigen binding. Early in the deuteration reaction, the CD20 antigen suppressed deuteration at CDR3 (V(H)). In later time points, deuterium suppression occurred at CDR2 (V(H)) and CDR2 (V(L)), with the maintenance of the CDR3 (V(H)) interaction. These data suggest that CDR3 (V(H)) functions as the dominant antigen docking motif and that antibody aggregation is induced at later time points after antigen binding. These approaches define a methodology for fine mapping of CDR contacts using nested enzymatic reactions and hydrogen deuterium exchange mass spectrometry. These data support the further development of an engineered, synthetic canine–murine monoclonal antibody, focused on CDR3 (V(H)), for use as a canine lymphoma therapeutic that mimics the human–murine chimeric anti-CD20 antibody Rituximab. Portland Press Ltd. 2021-01-15 2021-01-13 /pmc/articles/PMC7813475/ /pubmed/33284343 http://dx.doi.org/10.1042/BCJ20200674 Text en © 2021 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Cancer
Uhrik, Lukas
Hernychova, Lenka
Muller, Petr
Kalathiya, Umesh
Lisowska, Malgorzata M.
Kocikowski, Mikolaj
Parys, Maciej
Faktor, Jakub
Nekulova, Marta
Nortcliffe, Chris
Zatloukalova, Pavlina
Ruetgen, Barbara
Fahraeus, Robin
Ball, Kathryn L.
Argyle, David J.
Vojtesek, Borivoj
Hupp, Ted R.
Hydrogen deuterium exchange mass spectrometry identifies the dominant paratope in CD20 antigen binding to the NCD1.2 monoclonal antibody
title Hydrogen deuterium exchange mass spectrometry identifies the dominant paratope in CD20 antigen binding to the NCD1.2 monoclonal antibody
title_full Hydrogen deuterium exchange mass spectrometry identifies the dominant paratope in CD20 antigen binding to the NCD1.2 monoclonal antibody
title_fullStr Hydrogen deuterium exchange mass spectrometry identifies the dominant paratope in CD20 antigen binding to the NCD1.2 monoclonal antibody
title_full_unstemmed Hydrogen deuterium exchange mass spectrometry identifies the dominant paratope in CD20 antigen binding to the NCD1.2 monoclonal antibody
title_short Hydrogen deuterium exchange mass spectrometry identifies the dominant paratope in CD20 antigen binding to the NCD1.2 monoclonal antibody
title_sort hydrogen deuterium exchange mass spectrometry identifies the dominant paratope in cd20 antigen binding to the ncd1.2 monoclonal antibody
topic Cancer
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7813475/
https://www.ncbi.nlm.nih.gov/pubmed/33284343
http://dx.doi.org/10.1042/BCJ20200674
work_keys_str_mv AT uhriklukas hydrogendeuteriumexchangemassspectrometryidentifiesthedominantparatopeincd20antigenbindingtothencd12monoclonalantibody
AT hernychovalenka hydrogendeuteriumexchangemassspectrometryidentifiesthedominantparatopeincd20antigenbindingtothencd12monoclonalantibody
AT mullerpetr hydrogendeuteriumexchangemassspectrometryidentifiesthedominantparatopeincd20antigenbindingtothencd12monoclonalantibody
AT kalathiyaumesh hydrogendeuteriumexchangemassspectrometryidentifiesthedominantparatopeincd20antigenbindingtothencd12monoclonalantibody
AT lisowskamalgorzatam hydrogendeuteriumexchangemassspectrometryidentifiesthedominantparatopeincd20antigenbindingtothencd12monoclonalantibody
AT kocikowskimikolaj hydrogendeuteriumexchangemassspectrometryidentifiesthedominantparatopeincd20antigenbindingtothencd12monoclonalantibody
AT parysmaciej hydrogendeuteriumexchangemassspectrometryidentifiesthedominantparatopeincd20antigenbindingtothencd12monoclonalantibody
AT faktorjakub hydrogendeuteriumexchangemassspectrometryidentifiesthedominantparatopeincd20antigenbindingtothencd12monoclonalantibody
AT nekulovamarta hydrogendeuteriumexchangemassspectrometryidentifiesthedominantparatopeincd20antigenbindingtothencd12monoclonalantibody
AT nortcliffechris hydrogendeuteriumexchangemassspectrometryidentifiesthedominantparatopeincd20antigenbindingtothencd12monoclonalantibody
AT zatloukalovapavlina hydrogendeuteriumexchangemassspectrometryidentifiesthedominantparatopeincd20antigenbindingtothencd12monoclonalantibody
AT ruetgenbarbara hydrogendeuteriumexchangemassspectrometryidentifiesthedominantparatopeincd20antigenbindingtothencd12monoclonalantibody
AT fahraeusrobin hydrogendeuteriumexchangemassspectrometryidentifiesthedominantparatopeincd20antigenbindingtothencd12monoclonalantibody
AT ballkathrynl hydrogendeuteriumexchangemassspectrometryidentifiesthedominantparatopeincd20antigenbindingtothencd12monoclonalantibody
AT argyledavidj hydrogendeuteriumexchangemassspectrometryidentifiesthedominantparatopeincd20antigenbindingtothencd12monoclonalantibody
AT vojtesekborivoj hydrogendeuteriumexchangemassspectrometryidentifiesthedominantparatopeincd20antigenbindingtothencd12monoclonalantibody
AT hupptedr hydrogendeuteriumexchangemassspectrometryidentifiesthedominantparatopeincd20antigenbindingtothencd12monoclonalantibody