Cargando…
A narrative review on characterization of acute respiratory distress syndrome in COVID-19-infected lungs using artificial intelligence
COVID-19 has infected 77.4 million people worldwide and has caused 1.7 million fatalities as of December 21, 2020. The primary cause of death due to COVID-19 is Acute Respiratory Distress Syndrome (ARDS). According to the World Health Organization (WHO), people who are at least 60 years old or have...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7813499/ https://www.ncbi.nlm.nih.gov/pubmed/33550068 http://dx.doi.org/10.1016/j.compbiomed.2021.104210 |
_version_ | 1783637861640175616 |
---|---|
author | Suri, Jasjit S. Agarwal, Sushant Gupta, Suneet K. Puvvula, Anudeep Biswas, Mainak Saba, Luca Bit, Arindam Tandel, Gopal S. Agarwal, Mohit Patrick, Anubhav Faa, Gavino Singh, Inder M. Oberleitner, Ronald Turk, Monika Chadha, Paramjit S. Johri, Amer M. Miguel Sanches, J. Khanna, Narendra N. Viskovic, Klaudija Mavrogeni, Sophie Laird, John R. Pareek, Gyan Miner, Martin Sobel, David W. Balestrieri, Antonella Sfikakis, Petros P. Tsoulfas, George Protogerou, Athanasios Misra, Durga Prasanna Agarwal, Vikas Kitas, George D. Ahluwalia, Puneet Teji, Jagjit Al-Maini, Mustafa Dhanjil, Surinder K. Sockalingam, Meyypan Saxena, Ajit Nicolaides, Andrew Sharma, Aditya Rathore, Vijay Ajuluchukwu, Janet N.A. Fatemi, Mostafa Alizad, Azra Viswanathan, Vijay Krishnan, P.K. Naidu, Subbaram |
author_facet | Suri, Jasjit S. Agarwal, Sushant Gupta, Suneet K. Puvvula, Anudeep Biswas, Mainak Saba, Luca Bit, Arindam Tandel, Gopal S. Agarwal, Mohit Patrick, Anubhav Faa, Gavino Singh, Inder M. Oberleitner, Ronald Turk, Monika Chadha, Paramjit S. Johri, Amer M. Miguel Sanches, J. Khanna, Narendra N. Viskovic, Klaudija Mavrogeni, Sophie Laird, John R. Pareek, Gyan Miner, Martin Sobel, David W. Balestrieri, Antonella Sfikakis, Petros P. Tsoulfas, George Protogerou, Athanasios Misra, Durga Prasanna Agarwal, Vikas Kitas, George D. Ahluwalia, Puneet Teji, Jagjit Al-Maini, Mustafa Dhanjil, Surinder K. Sockalingam, Meyypan Saxena, Ajit Nicolaides, Andrew Sharma, Aditya Rathore, Vijay Ajuluchukwu, Janet N.A. Fatemi, Mostafa Alizad, Azra Viswanathan, Vijay Krishnan, P.K. Naidu, Subbaram |
author_sort | Suri, Jasjit S. |
collection | PubMed |
description | COVID-19 has infected 77.4 million people worldwide and has caused 1.7 million fatalities as of December 21, 2020. The primary cause of death due to COVID-19 is Acute Respiratory Distress Syndrome (ARDS). According to the World Health Organization (WHO), people who are at least 60 years old or have comorbidities that have primarily been targeted are at the highest risk from SARS-CoV-2. Medical imaging provides a non-invasive, touch-free, and relatively safer alternative tool for diagnosis during the current ongoing pandemic. Artificial intelligence (AI) scientists are developing several intelligent computer-aided diagnosis (CAD) tools in multiple imaging modalities, i.e., lung computed tomography (CT), chest X-rays, and lung ultrasounds. These AI tools assist the pulmonary and critical care clinicians through (a) faster detection of the presence of a virus, (b) classifying pneumonia types, and (c) measuring the severity of viral damage in COVID-19-infected patients. Thus, it is of the utmost importance to fully understand the requirements of for a fast and successful, and timely lung scans analysis. This narrative review first presents the pathological layout of the lungs in the COVID-19 scenario, followed by understanding and then explains the comorbid statistical distributions in the ARDS framework. The novelty of this review is the approach to classifying the AI models as per the by school of thought (SoTs), exhibiting based on segregation of techniques and their characteristics. The study also discusses the identification of AI models and its extension from non-ARDS lungs (pre-COVID-19) to ARDS lungs (post-COVID-19). Furthermore, it also presents AI workflow considerations of for medical imaging modalities in the COVID-19 framework. Finally, clinical AI design considerations will be discussed. We conclude that the design of the current existing AI models can be improved by considering comorbidity as an independent factor. Furthermore, ARDS post-processing clinical systems must involve include (i) the clinical validation and verification of AI-models, (ii) reliability and stability criteria, and (iii) easily adaptable, and (iv) generalization assessments of AI systems for their use in pulmonary, critical care, and radiological settings. |
format | Online Article Text |
id | pubmed-7813499 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier Ltd. |
record_format | MEDLINE/PubMed |
spelling | pubmed-78134992021-01-19 A narrative review on characterization of acute respiratory distress syndrome in COVID-19-infected lungs using artificial intelligence Suri, Jasjit S. Agarwal, Sushant Gupta, Suneet K. Puvvula, Anudeep Biswas, Mainak Saba, Luca Bit, Arindam Tandel, Gopal S. Agarwal, Mohit Patrick, Anubhav Faa, Gavino Singh, Inder M. Oberleitner, Ronald Turk, Monika Chadha, Paramjit S. Johri, Amer M. Miguel Sanches, J. Khanna, Narendra N. Viskovic, Klaudija Mavrogeni, Sophie Laird, John R. Pareek, Gyan Miner, Martin Sobel, David W. Balestrieri, Antonella Sfikakis, Petros P. Tsoulfas, George Protogerou, Athanasios Misra, Durga Prasanna Agarwal, Vikas Kitas, George D. Ahluwalia, Puneet Teji, Jagjit Al-Maini, Mustafa Dhanjil, Surinder K. Sockalingam, Meyypan Saxena, Ajit Nicolaides, Andrew Sharma, Aditya Rathore, Vijay Ajuluchukwu, Janet N.A. Fatemi, Mostafa Alizad, Azra Viswanathan, Vijay Krishnan, P.K. Naidu, Subbaram Comput Biol Med Article COVID-19 has infected 77.4 million people worldwide and has caused 1.7 million fatalities as of December 21, 2020. The primary cause of death due to COVID-19 is Acute Respiratory Distress Syndrome (ARDS). According to the World Health Organization (WHO), people who are at least 60 years old or have comorbidities that have primarily been targeted are at the highest risk from SARS-CoV-2. Medical imaging provides a non-invasive, touch-free, and relatively safer alternative tool for diagnosis during the current ongoing pandemic. Artificial intelligence (AI) scientists are developing several intelligent computer-aided diagnosis (CAD) tools in multiple imaging modalities, i.e., lung computed tomography (CT), chest X-rays, and lung ultrasounds. These AI tools assist the pulmonary and critical care clinicians through (a) faster detection of the presence of a virus, (b) classifying pneumonia types, and (c) measuring the severity of viral damage in COVID-19-infected patients. Thus, it is of the utmost importance to fully understand the requirements of for a fast and successful, and timely lung scans analysis. This narrative review first presents the pathological layout of the lungs in the COVID-19 scenario, followed by understanding and then explains the comorbid statistical distributions in the ARDS framework. The novelty of this review is the approach to classifying the AI models as per the by school of thought (SoTs), exhibiting based on segregation of techniques and their characteristics. The study also discusses the identification of AI models and its extension from non-ARDS lungs (pre-COVID-19) to ARDS lungs (post-COVID-19). Furthermore, it also presents AI workflow considerations of for medical imaging modalities in the COVID-19 framework. Finally, clinical AI design considerations will be discussed. We conclude that the design of the current existing AI models can be improved by considering comorbidity as an independent factor. Furthermore, ARDS post-processing clinical systems must involve include (i) the clinical validation and verification of AI-models, (ii) reliability and stability criteria, and (iii) easily adaptable, and (iv) generalization assessments of AI systems for their use in pulmonary, critical care, and radiological settings. Elsevier Ltd. 2021-03 2021-01-18 /pmc/articles/PMC7813499/ /pubmed/33550068 http://dx.doi.org/10.1016/j.compbiomed.2021.104210 Text en © 2021 Elsevier Ltd. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
spellingShingle | Article Suri, Jasjit S. Agarwal, Sushant Gupta, Suneet K. Puvvula, Anudeep Biswas, Mainak Saba, Luca Bit, Arindam Tandel, Gopal S. Agarwal, Mohit Patrick, Anubhav Faa, Gavino Singh, Inder M. Oberleitner, Ronald Turk, Monika Chadha, Paramjit S. Johri, Amer M. Miguel Sanches, J. Khanna, Narendra N. Viskovic, Klaudija Mavrogeni, Sophie Laird, John R. Pareek, Gyan Miner, Martin Sobel, David W. Balestrieri, Antonella Sfikakis, Petros P. Tsoulfas, George Protogerou, Athanasios Misra, Durga Prasanna Agarwal, Vikas Kitas, George D. Ahluwalia, Puneet Teji, Jagjit Al-Maini, Mustafa Dhanjil, Surinder K. Sockalingam, Meyypan Saxena, Ajit Nicolaides, Andrew Sharma, Aditya Rathore, Vijay Ajuluchukwu, Janet N.A. Fatemi, Mostafa Alizad, Azra Viswanathan, Vijay Krishnan, P.K. Naidu, Subbaram A narrative review on characterization of acute respiratory distress syndrome in COVID-19-infected lungs using artificial intelligence |
title | A narrative review on characterization of acute respiratory distress syndrome in COVID-19-infected lungs using artificial intelligence |
title_full | A narrative review on characterization of acute respiratory distress syndrome in COVID-19-infected lungs using artificial intelligence |
title_fullStr | A narrative review on characterization of acute respiratory distress syndrome in COVID-19-infected lungs using artificial intelligence |
title_full_unstemmed | A narrative review on characterization of acute respiratory distress syndrome in COVID-19-infected lungs using artificial intelligence |
title_short | A narrative review on characterization of acute respiratory distress syndrome in COVID-19-infected lungs using artificial intelligence |
title_sort | narrative review on characterization of acute respiratory distress syndrome in covid-19-infected lungs using artificial intelligence |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7813499/ https://www.ncbi.nlm.nih.gov/pubmed/33550068 http://dx.doi.org/10.1016/j.compbiomed.2021.104210 |
work_keys_str_mv | AT surijasjits anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT agarwalsushant anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT guptasuneetk anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT puvvulaanudeep anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT biswasmainak anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT sabaluca anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT bitarindam anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT tandelgopals anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT agarwalmohit anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT patrickanubhav anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT faagavino anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT singhinderm anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT oberleitnerronald anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT turkmonika anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT chadhaparamjits anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT johriamerm anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT miguelsanchesj anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT khannanarendran anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT viskovicklaudija anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT mavrogenisophie anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT lairdjohnr anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT pareekgyan anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT minermartin anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT sobeldavidw anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT balestrieriantonella anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT sfikakispetrosp anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT tsoulfasgeorge anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT protogerouathanasios anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT misradurgaprasanna anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT agarwalvikas anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT kitasgeorged anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT ahluwaliapuneet anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT tejijagjit anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT almainimustafa anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT dhanjilsurinderk anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT sockalingammeyypan anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT saxenaajit anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT nicolaidesandrew anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT sharmaaditya anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT rathorevijay anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT ajuluchukwujanetna anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT fatemimostafa anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT alizadazra anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT viswanathanvijay anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT krishnanpk anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT naidusubbaram anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT surijasjits narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT agarwalsushant narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT guptasuneetk narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT puvvulaanudeep narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT biswasmainak narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT sabaluca narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT bitarindam narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT tandelgopals narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT agarwalmohit narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT patrickanubhav narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT faagavino narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT singhinderm narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT oberleitnerronald narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT turkmonika narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT chadhaparamjits narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT johriamerm narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT miguelsanchesj narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT khannanarendran narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT viskovicklaudija narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT mavrogenisophie narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT lairdjohnr narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT pareekgyan narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT minermartin narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT sobeldavidw narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT balestrieriantonella narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT sfikakispetrosp narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT tsoulfasgeorge narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT protogerouathanasios narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT misradurgaprasanna narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT agarwalvikas narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT kitasgeorged narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT ahluwaliapuneet narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT tejijagjit narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT almainimustafa narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT dhanjilsurinderk narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT sockalingammeyypan narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT saxenaajit narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT nicolaidesandrew narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT sharmaaditya narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT rathorevijay narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT ajuluchukwujanetna narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT fatemimostafa narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT alizadazra narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT viswanathanvijay narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT krishnanpk narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence AT naidusubbaram narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence |