Cargando…

A narrative review on characterization of acute respiratory distress syndrome in COVID-19-infected lungs using artificial intelligence

COVID-19 has infected 77.4 million people worldwide and has caused 1.7 million fatalities as of December 21, 2020. The primary cause of death due to COVID-19 is Acute Respiratory Distress Syndrome (ARDS). According to the World Health Organization (WHO), people who are at least 60 years old or have...

Descripción completa

Detalles Bibliográficos
Autores principales: Suri, Jasjit S., Agarwal, Sushant, Gupta, Suneet K., Puvvula, Anudeep, Biswas, Mainak, Saba, Luca, Bit, Arindam, Tandel, Gopal S., Agarwal, Mohit, Patrick, Anubhav, Faa, Gavino, Singh, Inder M., Oberleitner, Ronald, Turk, Monika, Chadha, Paramjit S., Johri, Amer M., Miguel Sanches, J., Khanna, Narendra N., Viskovic, Klaudija, Mavrogeni, Sophie, Laird, John R., Pareek, Gyan, Miner, Martin, Sobel, David W., Balestrieri, Antonella, Sfikakis, Petros P., Tsoulfas, George, Protogerou, Athanasios, Misra, Durga Prasanna, Agarwal, Vikas, Kitas, George D., Ahluwalia, Puneet, Teji, Jagjit, Al-Maini, Mustafa, Dhanjil, Surinder K., Sockalingam, Meyypan, Saxena, Ajit, Nicolaides, Andrew, Sharma, Aditya, Rathore, Vijay, Ajuluchukwu, Janet N.A., Fatemi, Mostafa, Alizad, Azra, Viswanathan, Vijay, Krishnan, P.K., Naidu, Subbaram
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Ltd. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7813499/
https://www.ncbi.nlm.nih.gov/pubmed/33550068
http://dx.doi.org/10.1016/j.compbiomed.2021.104210
_version_ 1783637861640175616
author Suri, Jasjit S.
Agarwal, Sushant
Gupta, Suneet K.
Puvvula, Anudeep
Biswas, Mainak
Saba, Luca
Bit, Arindam
Tandel, Gopal S.
Agarwal, Mohit
Patrick, Anubhav
Faa, Gavino
Singh, Inder M.
Oberleitner, Ronald
Turk, Monika
Chadha, Paramjit S.
Johri, Amer M.
Miguel Sanches, J.
Khanna, Narendra N.
Viskovic, Klaudija
Mavrogeni, Sophie
Laird, John R.
Pareek, Gyan
Miner, Martin
Sobel, David W.
Balestrieri, Antonella
Sfikakis, Petros P.
Tsoulfas, George
Protogerou, Athanasios
Misra, Durga Prasanna
Agarwal, Vikas
Kitas, George D.
Ahluwalia, Puneet
Teji, Jagjit
Al-Maini, Mustafa
Dhanjil, Surinder K.
Sockalingam, Meyypan
Saxena, Ajit
Nicolaides, Andrew
Sharma, Aditya
Rathore, Vijay
Ajuluchukwu, Janet N.A.
Fatemi, Mostafa
Alizad, Azra
Viswanathan, Vijay
Krishnan, P.K.
Naidu, Subbaram
author_facet Suri, Jasjit S.
Agarwal, Sushant
Gupta, Suneet K.
Puvvula, Anudeep
Biswas, Mainak
Saba, Luca
Bit, Arindam
Tandel, Gopal S.
Agarwal, Mohit
Patrick, Anubhav
Faa, Gavino
Singh, Inder M.
Oberleitner, Ronald
Turk, Monika
Chadha, Paramjit S.
Johri, Amer M.
Miguel Sanches, J.
Khanna, Narendra N.
Viskovic, Klaudija
Mavrogeni, Sophie
Laird, John R.
Pareek, Gyan
Miner, Martin
Sobel, David W.
Balestrieri, Antonella
Sfikakis, Petros P.
Tsoulfas, George
Protogerou, Athanasios
Misra, Durga Prasanna
Agarwal, Vikas
Kitas, George D.
Ahluwalia, Puneet
Teji, Jagjit
Al-Maini, Mustafa
Dhanjil, Surinder K.
Sockalingam, Meyypan
Saxena, Ajit
Nicolaides, Andrew
Sharma, Aditya
Rathore, Vijay
Ajuluchukwu, Janet N.A.
Fatemi, Mostafa
Alizad, Azra
Viswanathan, Vijay
Krishnan, P.K.
Naidu, Subbaram
author_sort Suri, Jasjit S.
collection PubMed
description COVID-19 has infected 77.4 million people worldwide and has caused 1.7 million fatalities as of December 21, 2020. The primary cause of death due to COVID-19 is Acute Respiratory Distress Syndrome (ARDS). According to the World Health Organization (WHO), people who are at least 60 years old or have comorbidities that have primarily been targeted are at the highest risk from SARS-CoV-2. Medical imaging provides a non-invasive, touch-free, and relatively safer alternative tool for diagnosis during the current ongoing pandemic. Artificial intelligence (AI) scientists are developing several intelligent computer-aided diagnosis (CAD) tools in multiple imaging modalities, i.e., lung computed tomography (CT), chest X-rays, and lung ultrasounds. These AI tools assist the pulmonary and critical care clinicians through (a) faster detection of the presence of a virus, (b) classifying pneumonia types, and (c) measuring the severity of viral damage in COVID-19-infected patients. Thus, it is of the utmost importance to fully understand the requirements of for a fast and successful, and timely lung scans analysis. This narrative review first presents the pathological layout of the lungs in the COVID-19 scenario, followed by understanding and then explains the comorbid statistical distributions in the ARDS framework. The novelty of this review is the approach to classifying the AI models as per the by school of thought (SoTs), exhibiting based on segregation of techniques and their characteristics. The study also discusses the identification of AI models and its extension from non-ARDS lungs (pre-COVID-19) to ARDS lungs (post-COVID-19). Furthermore, it also presents AI workflow considerations of for medical imaging modalities in the COVID-19 framework. Finally, clinical AI design considerations will be discussed. We conclude that the design of the current existing AI models can be improved by considering comorbidity as an independent factor. Furthermore, ARDS post-processing clinical systems must involve include (i) the clinical validation and verification of AI-models, (ii) reliability and stability criteria, and (iii) easily adaptable, and (iv) generalization assessments of AI systems for their use in pulmonary, critical care, and radiological settings.
format Online
Article
Text
id pubmed-7813499
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Elsevier Ltd.
record_format MEDLINE/PubMed
spelling pubmed-78134992021-01-19 A narrative review on characterization of acute respiratory distress syndrome in COVID-19-infected lungs using artificial intelligence Suri, Jasjit S. Agarwal, Sushant Gupta, Suneet K. Puvvula, Anudeep Biswas, Mainak Saba, Luca Bit, Arindam Tandel, Gopal S. Agarwal, Mohit Patrick, Anubhav Faa, Gavino Singh, Inder M. Oberleitner, Ronald Turk, Monika Chadha, Paramjit S. Johri, Amer M. Miguel Sanches, J. Khanna, Narendra N. Viskovic, Klaudija Mavrogeni, Sophie Laird, John R. Pareek, Gyan Miner, Martin Sobel, David W. Balestrieri, Antonella Sfikakis, Petros P. Tsoulfas, George Protogerou, Athanasios Misra, Durga Prasanna Agarwal, Vikas Kitas, George D. Ahluwalia, Puneet Teji, Jagjit Al-Maini, Mustafa Dhanjil, Surinder K. Sockalingam, Meyypan Saxena, Ajit Nicolaides, Andrew Sharma, Aditya Rathore, Vijay Ajuluchukwu, Janet N.A. Fatemi, Mostafa Alizad, Azra Viswanathan, Vijay Krishnan, P.K. Naidu, Subbaram Comput Biol Med Article COVID-19 has infected 77.4 million people worldwide and has caused 1.7 million fatalities as of December 21, 2020. The primary cause of death due to COVID-19 is Acute Respiratory Distress Syndrome (ARDS). According to the World Health Organization (WHO), people who are at least 60 years old or have comorbidities that have primarily been targeted are at the highest risk from SARS-CoV-2. Medical imaging provides a non-invasive, touch-free, and relatively safer alternative tool for diagnosis during the current ongoing pandemic. Artificial intelligence (AI) scientists are developing several intelligent computer-aided diagnosis (CAD) tools in multiple imaging modalities, i.e., lung computed tomography (CT), chest X-rays, and lung ultrasounds. These AI tools assist the pulmonary and critical care clinicians through (a) faster detection of the presence of a virus, (b) classifying pneumonia types, and (c) measuring the severity of viral damage in COVID-19-infected patients. Thus, it is of the utmost importance to fully understand the requirements of for a fast and successful, and timely lung scans analysis. This narrative review first presents the pathological layout of the lungs in the COVID-19 scenario, followed by understanding and then explains the comorbid statistical distributions in the ARDS framework. The novelty of this review is the approach to classifying the AI models as per the by school of thought (SoTs), exhibiting based on segregation of techniques and their characteristics. The study also discusses the identification of AI models and its extension from non-ARDS lungs (pre-COVID-19) to ARDS lungs (post-COVID-19). Furthermore, it also presents AI workflow considerations of for medical imaging modalities in the COVID-19 framework. Finally, clinical AI design considerations will be discussed. We conclude that the design of the current existing AI models can be improved by considering comorbidity as an independent factor. Furthermore, ARDS post-processing clinical systems must involve include (i) the clinical validation and verification of AI-models, (ii) reliability and stability criteria, and (iii) easily adaptable, and (iv) generalization assessments of AI systems for their use in pulmonary, critical care, and radiological settings. Elsevier Ltd. 2021-03 2021-01-18 /pmc/articles/PMC7813499/ /pubmed/33550068 http://dx.doi.org/10.1016/j.compbiomed.2021.104210 Text en © 2021 Elsevier Ltd. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
spellingShingle Article
Suri, Jasjit S.
Agarwal, Sushant
Gupta, Suneet K.
Puvvula, Anudeep
Biswas, Mainak
Saba, Luca
Bit, Arindam
Tandel, Gopal S.
Agarwal, Mohit
Patrick, Anubhav
Faa, Gavino
Singh, Inder M.
Oberleitner, Ronald
Turk, Monika
Chadha, Paramjit S.
Johri, Amer M.
Miguel Sanches, J.
Khanna, Narendra N.
Viskovic, Klaudija
Mavrogeni, Sophie
Laird, John R.
Pareek, Gyan
Miner, Martin
Sobel, David W.
Balestrieri, Antonella
Sfikakis, Petros P.
Tsoulfas, George
Protogerou, Athanasios
Misra, Durga Prasanna
Agarwal, Vikas
Kitas, George D.
Ahluwalia, Puneet
Teji, Jagjit
Al-Maini, Mustafa
Dhanjil, Surinder K.
Sockalingam, Meyypan
Saxena, Ajit
Nicolaides, Andrew
Sharma, Aditya
Rathore, Vijay
Ajuluchukwu, Janet N.A.
Fatemi, Mostafa
Alizad, Azra
Viswanathan, Vijay
Krishnan, P.K.
Naidu, Subbaram
A narrative review on characterization of acute respiratory distress syndrome in COVID-19-infected lungs using artificial intelligence
title A narrative review on characterization of acute respiratory distress syndrome in COVID-19-infected lungs using artificial intelligence
title_full A narrative review on characterization of acute respiratory distress syndrome in COVID-19-infected lungs using artificial intelligence
title_fullStr A narrative review on characterization of acute respiratory distress syndrome in COVID-19-infected lungs using artificial intelligence
title_full_unstemmed A narrative review on characterization of acute respiratory distress syndrome in COVID-19-infected lungs using artificial intelligence
title_short A narrative review on characterization of acute respiratory distress syndrome in COVID-19-infected lungs using artificial intelligence
title_sort narrative review on characterization of acute respiratory distress syndrome in covid-19-infected lungs using artificial intelligence
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7813499/
https://www.ncbi.nlm.nih.gov/pubmed/33550068
http://dx.doi.org/10.1016/j.compbiomed.2021.104210
work_keys_str_mv AT surijasjits anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT agarwalsushant anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT guptasuneetk anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT puvvulaanudeep anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT biswasmainak anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT sabaluca anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT bitarindam anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT tandelgopals anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT agarwalmohit anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT patrickanubhav anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT faagavino anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT singhinderm anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT oberleitnerronald anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT turkmonika anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT chadhaparamjits anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT johriamerm anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT miguelsanchesj anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT khannanarendran anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT viskovicklaudija anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT mavrogenisophie anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT lairdjohnr anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT pareekgyan anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT minermartin anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT sobeldavidw anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT balestrieriantonella anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT sfikakispetrosp anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT tsoulfasgeorge anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT protogerouathanasios anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT misradurgaprasanna anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT agarwalvikas anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT kitasgeorged anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT ahluwaliapuneet anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT tejijagjit anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT almainimustafa anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT dhanjilsurinderk anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT sockalingammeyypan anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT saxenaajit anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT nicolaidesandrew anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT sharmaaditya anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT rathorevijay anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT ajuluchukwujanetna anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT fatemimostafa anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT alizadazra anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT viswanathanvijay anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT krishnanpk anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT naidusubbaram anarrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT surijasjits narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT agarwalsushant narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT guptasuneetk narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT puvvulaanudeep narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT biswasmainak narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT sabaluca narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT bitarindam narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT tandelgopals narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT agarwalmohit narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT patrickanubhav narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT faagavino narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT singhinderm narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT oberleitnerronald narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT turkmonika narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT chadhaparamjits narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT johriamerm narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT miguelsanchesj narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT khannanarendran narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT viskovicklaudija narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT mavrogenisophie narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT lairdjohnr narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT pareekgyan narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT minermartin narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT sobeldavidw narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT balestrieriantonella narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT sfikakispetrosp narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT tsoulfasgeorge narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT protogerouathanasios narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT misradurgaprasanna narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT agarwalvikas narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT kitasgeorged narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT ahluwaliapuneet narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT tejijagjit narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT almainimustafa narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT dhanjilsurinderk narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT sockalingammeyypan narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT saxenaajit narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT nicolaidesandrew narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT sharmaaditya narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT rathorevijay narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT ajuluchukwujanetna narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT fatemimostafa narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT alizadazra narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT viswanathanvijay narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT krishnanpk narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence
AT naidusubbaram narrativereviewoncharacterizationofacuterespiratorydistresssyndromeincovid19infectedlungsusingartificialintelligence