Cargando…
Radiomics in predicting treatment response in non-small-cell lung cancer: current status, challenges and future perspectives
OBJECTIVES: Radiomics is the extraction of quantitative data from medical imaging, which has the potential to characterise tumour phenotype. The radiomics approach has the capacity to construct predictive models for treatment response, essential for the pursuit of personalised medicine. In this lite...
Autores principales: | Chetan, Madhurima R., Gleeson, Fergus V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7813733/ https://www.ncbi.nlm.nih.gov/pubmed/32809167 http://dx.doi.org/10.1007/s00330-020-07141-9 |
Ejemplares similares
-
Developing an understanding of artificial intelligence lung nodule risk prediction using insights from the Brock model
por: Chetan, Madhurima R., et al.
Publicado: (2022) -
Can quantitative peritumoral CT radiomics features predict the prognosis of patients with non-small cell lung cancer? A systematic review
por: Wu, Linyu, et al.
Publicado: (2022) -
Radiomics for lung adenocarcinoma manifesting as pure ground-glass nodules: invasive prediction
por: Sun, Yingli, et al.
Publicado: (2020) -
Using contrast-enhanced CT and non-contrast-enhanced CT to predict EGFR mutation status in NSCLC patients—a radiomics nomogram analysis
por: Yang, Xiaoyan, et al.
Publicado: (2021) -
Radiomics analysis of lung CT for multidrug resistance prediction in active tuberculosis: a multicentre study
por: Li, Ye, et al.
Publicado: (2023)