Cargando…
From Steklov to Neumann via homogenisation
We study a new link between the Steklov and Neumann eigenvalues of domains in Euclidean space. This is obtained through an homogenisation limit of the Steklov problem on a periodically perforated domain, converging to a family of eigenvalue problems with dynamical boundary conditions. For this probl...
Autores principales: | Girouard, Alexandre, Henrot, Antoine, Lagacé, Jean |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7813763/ https://www.ncbi.nlm.nih.gov/pubmed/33505043 http://dx.doi.org/10.1007/s00205-020-01588-2 |
Ejemplares similares
-
Weyl’s Law for the Steklov Problem on Surfaces with Rough Boundary
por: Karpukhin, Mikhail, et al.
Publicado: (2023) -
Evaluation Algorithm of Root Canal Shape Based on Steklov Spectrum Analysis
por: Wu, Dongqing, et al.
Publicado: (2019) -
The Riemann-Hilbert problem: a publication from the Steklov institute of mathematics adviser Armen Sergeev
por: Anosov, D V, et al.
Publicado: (1994) -
Graph-based homogenisation for modelling cardiac fibrosis
por: Farquhar, Megan E., et al.
Publicado: (2022) -
Homogenisation of dynamical optimal transport on periodic graphs
por: Gladbach, Peter, et al.
Publicado: (2023)