Cargando…

Mathematical model of COVID-19 intervention scenarios for São Paulo—Brazil

With COVID-19 surging across the world, understanding the effectiveness of intervention strategies on transmission dynamics is of primary global health importance. Here, we develop and analyze an epidemiological compartmental model using multi-objective genetic algorithm design optimization to compa...

Descripción completa

Detalles Bibliográficos
Autores principales: Pinto Neto, Osmar, Kennedy, Deanna M., Reis, José Clark, Wang, Yiyu, Brizzi, Ana Carolina Brisola, Zambrano, Gustavo José, de Souza, Joabe Marcos, Pedroso, Wellington, de Mello Pedreiro, Rodrigo Cunha, de Matos Brizzi, Bruno, Abinader, Ellysson Oliveira, Zângaro, Renato Amaro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7814036/
https://www.ncbi.nlm.nih.gov/pubmed/33462211
http://dx.doi.org/10.1038/s41467-020-20687-y
_version_ 1783637974893723648
author Pinto Neto, Osmar
Kennedy, Deanna M.
Reis, José Clark
Wang, Yiyu
Brizzi, Ana Carolina Brisola
Zambrano, Gustavo José
de Souza, Joabe Marcos
Pedroso, Wellington
de Mello Pedreiro, Rodrigo Cunha
de Matos Brizzi, Bruno
Abinader, Ellysson Oliveira
Zângaro, Renato Amaro
author_facet Pinto Neto, Osmar
Kennedy, Deanna M.
Reis, José Clark
Wang, Yiyu
Brizzi, Ana Carolina Brisola
Zambrano, Gustavo José
de Souza, Joabe Marcos
Pedroso, Wellington
de Mello Pedreiro, Rodrigo Cunha
de Matos Brizzi, Bruno
Abinader, Ellysson Oliveira
Zângaro, Renato Amaro
author_sort Pinto Neto, Osmar
collection PubMed
description With COVID-19 surging across the world, understanding the effectiveness of intervention strategies on transmission dynamics is of primary global health importance. Here, we develop and analyze an epidemiological compartmental model using multi-objective genetic algorithm design optimization to compare scenarios related to strategy type, the extent of social distancing, time window, and personal protection levels on the transmission dynamics of COVID-19 in São Paulo, Brazil. The results indicate that the optimal strategy for São Paulo is to reduce social distancing over time with a stepping-down reduction in the magnitude of social distancing every 80-days. Our results also indicate that the ability to reduce social distancing depends on a 5–10% increase in the current percentage of people strictly following protective guidelines, highlighting the importance of protective behavior in controlling the pandemic. Our framework can be extended to model transmission dynamics for other countries, regions, states, cities, and organizations.
format Online
Article
Text
id pubmed-7814036
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-78140362021-01-25 Mathematical model of COVID-19 intervention scenarios for São Paulo—Brazil Pinto Neto, Osmar Kennedy, Deanna M. Reis, José Clark Wang, Yiyu Brizzi, Ana Carolina Brisola Zambrano, Gustavo José de Souza, Joabe Marcos Pedroso, Wellington de Mello Pedreiro, Rodrigo Cunha de Matos Brizzi, Bruno Abinader, Ellysson Oliveira Zângaro, Renato Amaro Nat Commun Article With COVID-19 surging across the world, understanding the effectiveness of intervention strategies on transmission dynamics is of primary global health importance. Here, we develop and analyze an epidemiological compartmental model using multi-objective genetic algorithm design optimization to compare scenarios related to strategy type, the extent of social distancing, time window, and personal protection levels on the transmission dynamics of COVID-19 in São Paulo, Brazil. The results indicate that the optimal strategy for São Paulo is to reduce social distancing over time with a stepping-down reduction in the magnitude of social distancing every 80-days. Our results also indicate that the ability to reduce social distancing depends on a 5–10% increase in the current percentage of people strictly following protective guidelines, highlighting the importance of protective behavior in controlling the pandemic. Our framework can be extended to model transmission dynamics for other countries, regions, states, cities, and organizations. Nature Publishing Group UK 2021-01-18 /pmc/articles/PMC7814036/ /pubmed/33462211 http://dx.doi.org/10.1038/s41467-020-20687-y Text en © The Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Pinto Neto, Osmar
Kennedy, Deanna M.
Reis, José Clark
Wang, Yiyu
Brizzi, Ana Carolina Brisola
Zambrano, Gustavo José
de Souza, Joabe Marcos
Pedroso, Wellington
de Mello Pedreiro, Rodrigo Cunha
de Matos Brizzi, Bruno
Abinader, Ellysson Oliveira
Zângaro, Renato Amaro
Mathematical model of COVID-19 intervention scenarios for São Paulo—Brazil
title Mathematical model of COVID-19 intervention scenarios for São Paulo—Brazil
title_full Mathematical model of COVID-19 intervention scenarios for São Paulo—Brazil
title_fullStr Mathematical model of COVID-19 intervention scenarios for São Paulo—Brazil
title_full_unstemmed Mathematical model of COVID-19 intervention scenarios for São Paulo—Brazil
title_short Mathematical model of COVID-19 intervention scenarios for São Paulo—Brazil
title_sort mathematical model of covid-19 intervention scenarios for são paulo—brazil
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7814036/
https://www.ncbi.nlm.nih.gov/pubmed/33462211
http://dx.doi.org/10.1038/s41467-020-20687-y
work_keys_str_mv AT pintonetoosmar mathematicalmodelofcovid19interventionscenariosforsaopaulobrazil
AT kennedydeannam mathematicalmodelofcovid19interventionscenariosforsaopaulobrazil
AT reisjoseclark mathematicalmodelofcovid19interventionscenariosforsaopaulobrazil
AT wangyiyu mathematicalmodelofcovid19interventionscenariosforsaopaulobrazil
AT brizzianacarolinabrisola mathematicalmodelofcovid19interventionscenariosforsaopaulobrazil
AT zambranogustavojose mathematicalmodelofcovid19interventionscenariosforsaopaulobrazil
AT desouzajoabemarcos mathematicalmodelofcovid19interventionscenariosforsaopaulobrazil
AT pedrosowellington mathematicalmodelofcovid19interventionscenariosforsaopaulobrazil
AT demellopedreirorodrigocunha mathematicalmodelofcovid19interventionscenariosforsaopaulobrazil
AT dematosbrizzibruno mathematicalmodelofcovid19interventionscenariosforsaopaulobrazil
AT abinaderellyssonoliveira mathematicalmodelofcovid19interventionscenariosforsaopaulobrazil
AT zangarorenatoamaro mathematicalmodelofcovid19interventionscenariosforsaopaulobrazil