Cargando…
Dynamic memristor-based reservoir computing for high-efficiency temporal signal processing
Reservoir computing is a highly efficient network for processing temporal signals due to its low training cost compared to standard recurrent neural networks, and generating rich reservoir states is critical in the hardware implementation. In this work, we report a parallel dynamic memristor-based r...
Autores principales: | Zhong, Yanan, Tang, Jianshi, Li, Xinyi, Gao, Bin, Qian, He, Wu, Huaqiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7814066/ https://www.ncbi.nlm.nih.gov/pubmed/33462233 http://dx.doi.org/10.1038/s41467-020-20692-1 |
Ejemplares similares
-
Multichannel parallel processing of neural signals in memristor arrays
por: Liu, Zhengwu, et al.
Publicado: (2020) -
Reservoir computing using dynamic memristors for temporal information processing
por: Du, Chao, et al.
Publicado: (2017) -
Neural signal analysis with memristor arrays towards high-efficiency brain–machine interfaces
por: Liu, Zhengwu, et al.
Publicado: (2020) -
Memristor-based analogue computing for brain-inspired sound localization with in situ training
por: Gao, Bin, et al.
Publicado: (2022) -
Rotating neurons for all-analog implementation of cyclic reservoir computing
por: Liang, Xiangpeng, et al.
Publicado: (2022)